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Abstract: Climate extremes such as heavy rainfall, droughts, 

and heatwaves pose an increased risk to human life, 

agriculture, buildings, and nature. Currently Pakistan relies 

on traditional statistical models that are built on limited 

station-level data, while machine-learning-based forecasts 

remain underutilized. The objective of this paper is to 

introduce a provincial-based approach for accurate and 

precise short-term extreme weather forecasts adapted to the 

unique climatic conditions of Pakistan. The research uses the 

Extreme Gradient Boosting algorithm along with 25 years of 

historical weather data of Pakistan retrieved from Numerical 

Weather Prediction models, specifically, GFS—Global 

Forecast System and ICON—Icosahedral Nonhydrostatic 

Model, in improving the prediction of heatwaves, droughts, 

and heavy rainfall events. The models showed excellent 

performance in identifying heatwaves, classifying droughts, 

and identifying rainfall severity. The results show the 

potential of refining data from physics-based weather models 

with machine learning models to significantly improve 

forecasts of climate extremes, filling a vital gap in Pakistan's 

weather prediction landscape. This approach would prove 

beneficial to emergency management agencies in disaster 

preparedness and response as well as to the general public to 

make better decisions.  
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I. INTRODUCTION 

Rapid climate change has increased the frequency and severity 

of extreme weather events, such as heavy rainfall, droughts, and 

heatwaves. These climate extremes are a mounting threat to 

ecosystems and human life, especially in developing countries 

like Pakistan. Pakistan is currently vulnerable because its 

current climate prediction systems lack the spatial and temporal 

resolution necessary to make timely and highly localized 

predictions. Consequently, disaster risk reduction efforts are 

hampered at both regional and national levels. 
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Traditional climate models, despite being valuable at larger 

scales, are not able to capture the spatial detail and deliver early 

warnings needed for forecasts capable of actual decision-making. 

This study, “Forecasting Climate Extremes: A Data-Driven 

Approach”, addresses these limitations by exploring the use of 

Machine Learning (ML) approaches to improve the accuracy, 

reliability, and responsiveness of climate forecast systems 

currently used in Pakistan. The main aim of this study is to design 

an ML-driven prediction system that can predict extreme climate 

events such as heavy rainfall, droughts, and heatwaves. The study 

utilizes both real-time and historical weather data from APIs of 

Open-Meteo [1] and supporting insights from OpenWeather [2], 

and Pakistan Meteorological Department 

(PMD) [3], utilizing XGBoost [4] algorithm along with 

engineered meteorological features to detect intricate patterns and 

early warnings for risk that conventional models may skip. 

 

The system is evaluated in terms of classification reports, 

confusion matrices, and F1-scores, considering the detection of 

rare yet high-impactful events. Fostering more reliable and highly 

localized forecasting, this study has relevance for disaster risk 

management, climate resilience-building, and strategic planning 

in some of the most climate-vulnerable parts of Pakistan. 

Moreover, the developed model is incorporated into a web-based 

service, which increases the accessibility and practical usefulness 

for users such as the government, NGOs, and general public. 

 

II. BACKGROUND RESEARCH 

A. Heavy Rainfall Prediction 

Heavy rainfall prediction is important for disaster management 

and agriculture planning. For a long time, traditional statistical 

methods such as Multiple Linear Regression (MLR) and Auto-

Regressive Integrated Moving Average (ARIMA), have been 

implemented for this purpose. MLR linearizes relation between 

climatic factors while ARIMA encapsulates temporal 

dependencies in time-series. However, both models often fail to 

capture the non-linear and chaotic behavior implicit in 

meteorological phenomena, especially during extreme events 

[5]. 

These traditional models have been gradually replaced by 

machine learning (ML) methods, including Support Vector 

Machines (SVM), k-Nearest Neighbors (k-NN) and Decision 

Trees (DT), because of their capability of modeling non-linear 
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patterns. Studies show that ML models outperformed traditional 

models when trained on large and complex data [6]. However, a 

number of these models are still challenged when it comes to 

scaling for high-dimensional datasets, or extreme rainfall 

conditions. Deep learning has made recent progress in further 

improving predictive capabilities. Long Short-Term Memory 

(LSTM) [7] networks have been successful for time-series 

prediction task due to the ability to capture long- and short-term 

dependencies [8]. Convolutional Neural Networks (CNNs), 

particularly when paired with LSTM layers, have been used to 

improve spatial-temporal modeling and reduce errors in rainfall 

forecasts [9]. 

But these models are generally less flexible to apply in the 

context of different regional areas. They are often trained for 

specific geographical areas and have trouble generalizing. 

Furthermore, difficulties persist in integrating real-time data for 

events such as flash floods [10]. Our study bridges this gap by 

introducing a machine learning-based climate prediction system 

tailored to the diverse climatic regions of Pakistan. We tested 

LSTM, Random Forest (RF) [11] and XGBoost models, and 

finally chose XGBoost because it performed best on structured or 

tabular weather datasets [12]. Unlike most previous work that 

focus on a single region or city, our system is deployed across all 

provinces of Pakistan, accounting for local climatic variability. 

B. Drought Prediction 

Droughts can pose extreme challenges to agriculture, ecosystems, 

and water supplies. Traditional drought indices like as 

Standardized Precipitation Index (SPI) and Effective 

Reconnaissance Drought Index (eRDI) are based on the input of 

historical precipitation and temperature data [13]. These indices 

are useful for long-term trend monitoring but lack the resolution 

for short-term prediction and rapid rise events [14]. 

ML techniques such as Support Vector Regression (SVR) and RF, 

have been employed to enhance drought forecasting. RF can 

especially process a huge amount of data and can capture complex 

interactions between climatic variables [15, 16]. Hybrid and 

ensemble models have been developed due to limitations of 

standalone algorithms. For instance, in the Southern Baluchestan 

basin located in Iran, hybrid models comprising the Artificial 

Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), and SVR with optimization methods including 

the Marine Predators Algorithm (MPA) have been effectively 

used [17]. Likewise, ensemble methods, like the Voting 

Regressors and AdaBoost are shown to achieve better accuracy in 

areas, including Morocco [18]. 

A further limitation in existing literature is the region-specific 

design of models, which hinders generalization. Besides, there is 

lack of real-time, sensor-based drought forecasting systems as 

well. In our study, the prediction of drought is considered as a 

component of integrated approach to predict extreme climate 

events over Pakistan. By deploying XGBoost models across all 

provinces and incorporating high-resolution meteorological 

inputs, our system offers both spatial coverage and temporal 

adaptability. By using lagged features as well as non-linear 

associations, more robust early warning signals of drought 

emergence are obtained. 

C. Heatwave Prediction 

Heatwaves – prolonged periods of abnormally high temperatures 

– have become more frequent due to climate 

change. Traditional forecasting techniques like Autoregressive 

Moving Average (ARMA) models analyze historical temperature 

patterns but fail to capture complex antecedents of heatwaves, 

such as human activities and feedback mechanisms [19]. 

ML algorithms based on temperature, humidity, and pressure 

information such as SVM, DT, and Neural Networks have shown 

some potential but are limited by data quality and the irregularity 

of heatwave occurrences [20]. The temporal and spatial modeling 

of heatwave prediction has been facilitated by deep learning 

models, especially LSTM and CNN. Hybrid approaches like 

Principal Component Analysis (PCA) combined with ARMA 

have been also tried in some studies to enhance performance 

[21]. 

Existing models often overlook the role of man-made factors, 

such as urbanization, and there are few specifically developed for 

developing countries with range of climate regimes such as in 

Pakistan. Our system predicts heatwave events using engineered 

features of lagged temperature, humidity, and pressure—factors 

shown to be influential in our feature importance analysis. The 

deployment across multiple provinces ensures adaptability to 

regional microclimates. 

III. METHODOLOGY 

A. Data Acquisition  

To train the selected models, the dataset comprising 

approximately 4680 grid points was collected for Pakistan across 

multiple provinces. The dataset consisted of historic hourly and 

daily weather data from the year 2000 to 2024 using Historical 

Weather API from Open-Meteo [1], which provides reanalysis 

outputs based on the ERA5 and ERA5-Land datasets at a 

resolution of 31 km and 9 km respectively [22]. The parameters 

were selected based on their relevance, which include variables 

such as temperature, precipitation, humidity, dew point, rain, wind 

speed, evapotranspiration, and soil moisture. Similar parameters 

selection was used in previous studies [23], which confirms the 

relevance of these features for training the models.  

The data collected was stored in separate comma-separated files 

(CSV) for each grid and later combined into Apache Parquet 

format. This format optimizes compression and is particularly 

efficient in large-scale data processing [24].  

B. Data Preprocessing 

Prior to model training, it is important that the dataset is 

thoroughly cleaned and validated to ensure quality and credibility, 

which improves models’ accuracy and reliability [25]. With 

python libraries—pandas, NumPy and Matplotlib, missing values 

in the data were observed. To ensure accuracy, the mean of the 

corresponding column was used to replace the missing values as 

described in [26]. Redundant rows were detected and eliminated. 

Data types of the columns were adjusted, for the date columns, 

they were converted to datetime and made sure that the numerical 

columns were cast accordingly to float64 or int64. Outliers were 

identified by the Inter-Quartile (IQR) method. A pair-wise 

correlation analysis was also performed to detect and eliminate 

highly correlated features with the aim of optimizing model 

efficiency and eliminating redundancy [27]. 

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 2 67



C. Feature Engineering and Model Development 

Feature engineering is a key part in model development in order 

to generate reliable predictions. For each of the climate extremes, 

extensive feature engineering was applied to each of the datasets, 

enriching it with meaningful temporal and climate-based features 

that represent seasonality, historical trends and threshold-based 

classifications. These engineered features were then used to train 

separate models for heatwave, drought and rainfall prediction, 

each discussed in the following subsections. 

i. Heatwave Prediction 

A heatwave event must be clearly defined before developing a 

model to forecast it. This paper defines a heatwave event as a 

period when the daily maximum temperature exceeds by the 95th 

percentile of the maximum temperature of the base year, for at 

least 5 continuous days. This definition is consistent with that 

used in [28, 29]. It is important to set the regional threshold 

percentile in order to provide accurate predictions [26]. Feature 

engineering played a key role in enabling the model to detect 

patterns that occur before a heatwave event. To help capture 

seasonal temperature trends, several time-based features were 

developed, including year, month, day_of_year, week_of_year, 

and season. Rolling averages were computed, such as 

temp_7d_avg and temp_14d_avg, to represent recent climatic 

behavior. The feature is_heatwave_day was to be used as the 

binary prediction label while the heatwave_threshold feature 

stored the regional threshold. These techniques resulted in an 

information-rich dataset. However, there was a large ratio 

between heatwave and non-heatwave days leading to an 

imbalance dataset, which would result in poor predictions. 

Therefore, the solution was to opt for Synthetic Minority 

Oversampling Technique (SMOTE) as proposed in [30]. The 

heatwave prediction task involved training a XGBoost 

classification model that classifies based on forecasted data of 2 

weeks, whether a heatwave will occur in any of those days or not, 

similar to the approach taken in [31]. XGBoost was chosen due to 

its high accuracy, stronger generalization and built-in 

regularization which helps it in preventing overfitting during 

prediction [32].  A time-aware split was used, where the last 20% 

of the data was reserved to be used to evaluate the model on 

unseen future data. Model evaluation metrics included a 

classification report that provided precision, recall and F1-score 

for each class and a confusion matrix that helped in the 

assessment of the model’s classification behavior. 

ii. Drought Prediction 

The definition of drought can vary depending on the focus of a 

study. This research however is focused on the prediction of 

meteorological droughts which occur due to the absence of 

weather-systems that transport moisture and produce heavy 

precipitation [33]. The drought prediction model aimed to 

classify drought intensity using a combination of climate 

indicators and precipitation-based indices like the Standard 

Precipitation Evapotranspiration Index (SPEI). SPEI is a 

drought index which standardizes both precipitation and 

potential evapotranspiration (PET) values, making it particularly 

useful for the capture of the impacts of temperature-driven 

water-demand aside from rainfall irregularities [34]. SPEI was 

used at 1-, 3-, 6-, and 12-month scales to evaluate drought 

conditions similar to what was proposed in [34, 35].  

 

The dataset was enriched with additional derived features like 

month, season, day-of-year, rolling precipitation sums, aridity 

index and cyclical encoding of wind direction. XGBoost multi-

class classifier was used along with hyperparameter tuning for 

which GridSearchCV was used for max_depth, learning_rate, and 

n_estimators since these parameters are complex and time-

consuming [36]. Cross-validation was performed 5-fold to 

validate results [37]. Evaluation metrics also included a 

classification report and a confusion matrix. 

iii. Rainfall Prediction 

Rainfall was divided into five categories: No rain, Weak, 

Moderate, Heavy, and Severe, following the methodology 

proposed in [38]. The dataset for rainfall prediction included 

hourly meteorological variables. The feature engineering pipeline 

implements Random Forest-based feature importance, mutual 

information analysis. Key derived features were month, season, 

day-of-year – capturing seasonal rainfall patterns like monsoon 

peaks and lag features that included rolling precipitation sums for 

1, 3, and 6 hours to model short-term rainfall accumulation trends. 

Key predictive features identified were soil moisture, surface 

pressure, cloud cover, dew point, relative humidity, and wind 

gusts. A new target column, rain_class, was created by binning 

precipitation_sum into five categorical labels based on WMO 

(World Meteorological Organization) thresholds [39]. 

A challenge encountered during this phase was an imbalanced 

dataset, heavily skewed towards the “No rain” category. 

Ensemble learning techniques are of the potential solution to this 

challenge [40], however the opted solution was to resample the 

dataset so each class is evenly represented, as proposed by the 

study [41]. Specifically, downsampling was used to reduce the 

dominance of the majority class. The model was trained using 

XGBoost to classify precipitation into each of the categories. The 

model overcomes the challenge of predicting rare severe weather 

events and showed robust performance in a similar study [36]. 

Evaluation metrics are the same used to assess heatwave and 

drought prediction. 

 

 
Figure I: Receiver Operating Characteristic (ROC) curve for 

heatwave classification in Sindh 
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IV. RESULTS AND DISCUSSION 

The classification reports are given in the tables below. A 

thorough assessment of the models' prediction ability is made 

possible by the metrics shown in the tables, which provide 

information on the models' accuracy, precision, recall, and F-1 

score [42].  

A. Heatwave Prediction Results 

Table I shows province-wise evaluation metrics, Punjab and 

Balochistan show near-perfect classification (Accuracy. Precision, 

Recall, F1-Score ≥ 0.98) while Khyber Pakhtunkhwa (KPK) 

performs well (F1-Score: 0.83) with a slightly lower recall (0.80). 

Sindh has a relatively lower recall (0.78) and low precision (0.68) 

which suggests that it missed more heatwave days. 

 

Table I: Performance Metrics of Heatwave Prediction Model 

Province Accuracy Precision Recall F1-Score 

Sindh 0.82 0.68 0.78 0.73 

Punjab 0.99 0.99 0.98 0.99 

Balochistan 0.99 0.98 0.98 0.98 

KPK 0.95 0.87 0.80 0.83 

 

The Receiver Operating Characteristic (ROC) curve for Sindh, as 

shown in Figure 1, demonstrates that the model has a strong 

ability to classify heatwave and non-heatwave events, with an 

AUC score of 0.9883. However, when evaluated at a fixed-

threshold (0.5) model achieved an accuracy of 0.82, precision of 

0.68, recall of 0.78 and F1-score of 0.73. This suggests that while 

the model may be effective at separating the two classes, its 

performance can be influenced by class imbalance or threshold 

choice. 

B. Drought Prediction Results 

 

Table II: Performance Metrics of Drought Prediction Model 

Province Accuracy Macro F1 Remarks 

Sindh 0.71 0.44 Class imbalance 

observed 

Punjab 0.81 0.71 Class 3 

performed best 

Balochistan 0.81 0.74 Strong recall for 

class 3 

KPK 0.85 0.79 Balanced 

performance 

 

 

 

 

Table II shows varying performance across provinces, with KPK 

achieving the overall highest accuracy (0.85) and macro F1-score 

(0.79) indicating a balanced classification. Punjab and Balochistan 

show comparable accuracy (0.81), although Balochistan received 

a higher macro F1-score likely due to its higher recall for class 3 

(Near-Normal), which is the class that represents the Near-Normal 

drought category. In contrast, Sindh underperforms (Accuracy: 

0.71, Macro F1:0.44:) suggesting severe class imbalance effects. 

 

 

Figure II: Confusion matrix for multiclass drought classification in Punjab.

  

Multi-class confusion matrix for Punjab’s drought classification 

shown in Figure II, suggests strong predictive performance for the 

majority class (Level 3), 10,279 correct predictions. However, 

clear confusion exists between adjacent drought levels, 

particularly between levels 2-4 and 3-5 which reflects the 

difficulty of differentiating similar severity levels. Rare drought 

categories show lower accuracy, likely due to class imbalance. 

C. Rainfall Prediction Results 

Table III represents the model performance for rainfall prediction 

in 3 provinces. The model shows high accuracy across all 

provinces (Sindh: 0.95, Punjab: 0.93, Balochistan: 0.96), however 

it shows critical weakness in predicting extreme rainfall events as 

indicated by the lower macro F1-scores (Sindh: 0.55, Punjab: 

0.70, Balochistan: 0.64) with particularly poor performance for 

predicting “Heavy Rain” in Sindh province and “Severe Rain ” in 

Punjab and Balochistan provinces. 

Table III Performance Metrics of Rainfall Prediction Model 

Province Accuracy Macro 

F1 

Weakest Class 

Sindh 0.95 0.55 Heavy Rain 

Punjab 0.93 0.70 Severe Rain 

Balochistan 0.96 0.64 Severe Rain 
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These metrics suggest that while the model may be good at 

predicting general weather patterns, its ability to identify extreme 

rainfall events needs to be significantly improved. 

D. Baseline Model Comparison 

To assess the effectiveness of the proposed XGBoost models, 

their results were compared against benchmarks from prior 

studies that evaluated ML methods for the same climate extremes. 

Heatwave: Deep Learning (ANN, CNN, LSTM) was used in prior 

work [26] for extreme heat prediction, achieving test accuracy of 

approximately 0.962. Although direct numeric comparison is not 

possible, the proposed XGBoost models’ provincial accuracies are 

competitive with deep learning performance. 

Drought: A recent study on SPEI-based drought forecasting in 

China [43] compared a basic XGBoost model with enhanced 

variants using feature selection and particle swarm optimization. 

The baseline model achieved moderate performance, while the 

proposed macro F1 scores between 0.71-0.79 across provinces, 

aligning with or even surpassing the basic model. 

Rainfall: The study [44] reported 95% accuracy and F1-

Score using hyperparameter-optimized XGBoost on hourly data. 

Proposed model achieved overall accuracy around 0.94-0.96 with 

macro F1-scores of 0.55-0.70. These results are comparable given 

the diverse climatic conditions of Pakistan. 

Table IV Comparison of Model Performance with Prior Studies 

Climate 

Extreme 

Baseline 

Model 

Reference Proposed 

Model 

Performance 

Comparison 

Heatwave LSTM 

(Deep 

Learning) 

[26] 

(Shafiq et 

al., 2025) 

XGBoost Similar accuracy 

(96% vs. 82-99%) 

Drought Basic 
XGBoost 

(SPEI-

based) 

[43](Zeng 
et al., 

2025) 

XGBoost Comparable 
accuracy (95% 

baseline vs. 94-

96%) 

Rainfall XGBoost 

(baseline 
optimized) 

[44] 

(Auriwan 
et al, 2023) 

XGBoost Better F1 scores 

(0.71-0.79 vs. 
0.70) 

Although the proposed models show performance that is similar 

to prior studies [26, 43, 44], this study presents a broader and 

more systematic evaluation of ML models for climate extreme 

prediction in Pakistan as shown in Table IV. Key distinctions 

include: (1) training on gridded weather datasets across four 

provinces, (2) developing separate models for heatwaves, drought 

and rainfall using customized feature engineering and (3) 

evaluating model performance across different climatic zones. 

These contributions are a steppingstone towards developing 

robust, ML-driven solutions. 

V. CONCLUSION 

This study presented machine-learning based models for the 

prediction of three major climate extremes, heatwaves, drought 

and rainfall, across multiple provinces of Pakistan. 25 years of 

gridded weather data (2000-2024) from NWP models was used 

and customized feature engineering for each extreme was carried 

out to train the XGBoost model which showed strong predictive 

performance across varying regions despite differences in climate 

and data imbalance.  

 

The results from this study support the use of machine learning in 

augmenting traditional climate forecasting systems aiding both 

governmental and non-governmental organizations in fast 

decision-making against these climate extremes. It is important to 

address the study’s limitations, firstly the model was trained on 

specific provinces, and their performance may not generalize well 

to geographically diverse regions. Secondly, the dataset has 

considerable class imbalance especially for rare events such as 

extreme drought or heavy rainfall. This has an impact on the 

model’s ability to predict for these categories with high 

confidence.  

Lastly, the study relies on historical data from NWP models, this 

means that any inaccuracies in that data could be propagated into 

the predictions. In future studies, deep learning models could be 

used to better capture the dynamics of climate variables. 

Furthermore, ensemble learning techniques that combine 

XGBoost with other ML or neural models could also be utilized 

for better generalization of varying climate zones. Overall this 

study contributes to the body of research that validates how data-

driven models could be used to predict climate extremes in areas 

that are vulnerable to climate change. 
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