
 

A Novel Framework for ECG Signal Processing  

and Robust Arrhythmia Detection  
Gautam Sharma1, Safia Tahir2, Mehwish Faiz3*, Huzaifa Ahmed4, Abdul Moiz Afridi5, Aneela Kiran6, Shahzad Nasim7

Abstract: Cardiovascular diseases are still one of the most important 

public health issues that the world is facing today. Early 

identification of heart problems can help with early diagnosis. 

Analyzing the electrical signals created by the heart can provide 

important insight into how well a person's heart is functioning. The 

electrical signals generated by the heart can be disrupted by noise 

and interference, which effects the interpretation of these signals. 

This paper reveals a novel approach to process bio signals to uncover 

the presence of abnormal heart rhythms based on abnormally fast, 

slow, or irregular heartbeat patterns. The results of the experimental 

evaluations demonstrate that out of total 10 participants, 6 

individuals have a normal heart pattern while the heart rate analysis 

of remaining 4 individuals indicates that they are having 

arrhythmia. Thus, the method used in this study successfully 

distinguishes between normal and abnormal cardiac conditions. 

This publication provides an overview of the potential use of signal 

processing to assist with early diagnosis of heart problems and 

improve ongoing monitoring of patients' health in both clinical and 

remote settings. 
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I. INTRODUCTION 

Cardiovascular Disease (CVD) are still the leading cause of death 
in the world with millions of people died each year [1],[2]. It 
encompasses a wide variety of conditions impacting both the heart 
and blood vessels. Included within CVD are the following: 
coronary arteries, heart failure and arrhythmias (rhythm problems) 
[1]-[5]. Atherosclerosis, Hypertension (high blood pressure), 
Diabetes Mellitus, Smoking, and a Sedentary Lifestyle are the 
multiple factors that deteriorate the cardiac health. As the heart 
becomes less efficient at pumping blood, these factors could 
ultimately result in conditions including Myocardial Ischemia 
(reduced flow of oxygenated blood to the heart), Ventricular 
Dysfunction (inability of the ventricles to contract), or Sudden 
Cardiac Death [1], [2]. Patients with declining cardiac output (CO) 
become fatigued, and have difficulty in breathing (dyspnea)[6]. 
They do not tolerate excessive physical activity, even their 
ambulation pattern is altered resulting in decreased step length [7]. 
Untreated myocardial infarction (MI, or heart attack) and 
malignant arrhythmia's lead to urgent medical situations that may 
have a very high likelihood of sudden death [1],[3]. 
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Arrhythmia is a condition in which heart beat is altered and is 

categorized into Bradycardia and Tachycardia. The Bradycardia is 

a condition when a person's heart beats slower than the normal, 

usually less than 60 times per minute (bpm). This decreases the 

cardiac output (CO), which in severe cases may result in dizziness, 

fainting (syncope), low blood pressure (hypo-tension), and in 

extreme cases heart failure or asystole [2],[3].  Tachycardia is 

when a person's heart beats too fast usually greater than 100 bpm 

[2][4]. Conversely, long-term fast heart rates increase diastolic 

filling time (DFT) and the MYO₂ demand on the heart thereby 

increasing the likelihood of ischemia (inadequate blood flow), the 

development of tachycardia-induced cardiomyopathy (disease of 

the heart muscle due to rapid heart beat) and the occurrence of 

premature ventricular contractions (PVCs) and sudden cardiac 

death (SCD)[2][3]. Abnormalities in heart rates are usually 

associated with changes in the shape of the QRS complex (QRS 

morphology) and changes in the beat-to-beat intervals (RR-

interval variability), both of which are critical elements in current 

frameworks for feature extraction such as Efficient QRS 

Morphology (E-QRSM) for the classification of PVCs [1],[3]. 

Thus, analyzing these waves are crucial to forecast the activity of 

heart.  

An electrocardiogram is a non-invasive tool to record the heart's 

electrical impulses. The P wave shows that the atria have been 

depolarized; the QRS complex indicates that the ventricles have 

been depolarized; and the T wave shows that the ventricles have 

been repolarized [3]-[5]. An ECG during bradycardia may show 

RR interval (that is the interval between R peaks) being prolonged, 

heart rate being significantly less than the average (in BPM). The 

output also displays the following "rhythms" that may have 

occurred during the ECG: sinus pauses, escape beats, and 

conduction delays; e.g. prolonged PR interval (AV nodes for 

Atrial Ventricular Conduction) or Bundle Branch Block (BBB) 

which can easily be identified by measuring a QRS that is greater 

than 120 ms in duration[2]. When someone has tachycardia, their 

RR (R-to-R) intervals shorten and there are several RR's separated 

by longer than usual amounts of time (i.e., several QRS 

complexes). In the case of supraventricular tachycardia (SVT), 

when taking the lead II ECG, the QRS complex is narrow; whereas 

when taking a ventricular tachycardia (VT) lead II ECG, the QRS 

complex widens and have an abnormally large, rounded 

morphology [2],[3]. To explore these differences accurately, 

advanced filtering techniques must be incorporated that remove 

noise caused by random motion of the heart muscle or skeletal 

muscles (electromyography noise - EMG noise), 50/60Hz 

powerline interference (PLI), or any other forms of noise. Along-

with the filtration technique during the processing of bio-signals, 

denoising filter techniques must also be employed including the 

stationary wavelet transform (SWT), notch filter, and robust 

Neville aggregation (RNA) operator so that the most 

diagnostically important features of the ECG, namely the P-, QRS-

, and T-waveforms, are preserved for measuring the following 

intervals: PR, QT, QRS, and RR.[3],[4]. In parallel with this, time-
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frequency transforms of greater sophistication (such as continuous 

wavelet transform (CWT), short-time Fourier transform (STFT), 

and plotting of FFT-derived spectra) are being widely applied to 

generate two-dimensional scalograms or spectrograms from one-

dimensional ECG waveforms, with the intent of capturing the 

arrhythmia both temporally and spectrally [5]. 

Numerous well-established ECG repositories provide large-scale 
electrocardiographic data (e.g., MIT-BIH AR and PTB DB) and 
routinely demonstrate that the majority of patients from diverse 
backgrounds exhibit at least one form of clinically significant 
arrhythmia [1],[3],[5].For digital signal processing of ECG either 
the data from these repositories are extracted or can directly fetch 
from hospitals. Recent studies indicate that QRS-feature-
extraction software applications (e.g., E-QRS-M) and advanced 
versions of the R-peak detectors have enhanced performance 
compared to the legacy method. Additionally, contemporary 
technology allows use of complex methods (e.g., SWT-based 
filters, RNA-based PLI suppression, CWT/FFT/STFT) that utilize 
sequential, 2D convolutional neural network (CNN) calculation 
methods, which have provided significant improvements over 
conventional techniques for detecting arrhythmias from short 
segment ECG [1],[5]. The technology's emergence demonstrates 
how AI-enabled ECG analysis systems are becoming an essential 
part of CAD that will alleviate the burden on physicians' 
workloads as well as provide for earlier medical interventions that 
reduce the risk of morbidity and death associated with CVDs [1]-
[5]. 

II. LITERATURE REVIEW 

An electrocardiogram (ECG) is widely used to diagnose cardiac 
disorders. Many algorithms have been employed to improve the 
analysis of ECG signal so that maximum information regarding 
cardiac condition can be extracted. Some of the latest approaches 
to dig out the bio-signal evaluation are listed here along with the 
algorithms implemented.  D. Zhai et al.,[8] employed the Pan-
Tompkins algorithm in detecting the QRS complex. It shows the 
optimum results but its performance is limited because of fixed 
threshold and its sensitivity to noise .  

Due to the non-stationary nature of ECG signals, wavelet-based 
techniques are widely used for ECG signal processing. The 
Discrete Wavelet Transform (DWT) and Continuous Wavelet 
Transform (CWT) enable the analysis of multi-resolution ECG 
signals, facilitating the accurate detection of different ECG 
components, such as P, Q, R, S, and T waves [9], [10]. The unique 
properties of Wavelet Transforms allow the alleviation of noise 
while retaining the most significant Morphological Characteristics 
of ECG Signals. Along with the implementation of multiple bio 
signal processing techniques in time & frequency domain, the 
advent of Machine Learning and Deep Learning has transformed 
the automatic interpretations of ECG signal. Thus, merging these 
time & frequency domain approaches with machine learning and 
deep learning model boosts the performance. S. C. Mohonta et 
al.,[9] et al. proposed a hybrid deep learning framework for ECG-
based arrhythmia classification that integrates the Continuous 
Wavelet Transform (CWT) with a two-dimensional Convolutional 
Neural Network (2D-CNN). The ECG signals were obtained from 
the MIT-BIH Arrhythmia Database, comprising 23 recordings of 
30 minutes duration each, sampled at 360 Hz. The study 
highlighted the effectiveness of CWT in multi-resolution signal 
analysis, as it preserves detailed time–frequency information 
while mitigating motion artifacts that commonly affect FFT and 
STFT methods, particularly at low frequencies. The proposed 
CWT-RGB model (TN4) demonstrated superior performance, 
achieving an average sensitivity of 98.87%, specificity of 99.85%, 
and overall accuracy of 99.65%. Despite these results, the 
approach is limited by the restricted diversity of arrhythmia classes 
and the relatively small dataset, consisting of approximately 7,500 
signal segments derived from only 23 recordings. Hybrid Models, 

such as developing a Combined Statistical, Spectral and 
Morphological Feature Set and a Machine Learning Classifier, for 
example, SVM and ANFIS, have been shown to improve 
classification performance for arrhythmias [11],[12]. 

S. Abagaro et al.,[12] in a research study proposes a hybrid ECG-
based arrhythmia classification framework that integrates 
morphological and dynamic features to improve diagnostic 
performance. Morphological characteristics are extracted from 
individual heartbeats using the Discrete Wavelet Transform 
(DWT), followed by Independent Component Analysis (ICA) for 
dimensionality reduction, resulting in a compact set of 
representative features. Dynamic information is derived from RR 
intervals, with nonlinear temporal behavior captured using the 
Teager Energy Operator (TEO) and multiple RR-based 
descriptors, including previous, subsequent, average, and local 
intervals. The combined feature set is classified using a deep 
feedforward neural network with ReLU and sigmoid activation 
functions. The approach demonstrates high performance on 
benchmark MIT-BIH arrhythmia datasets, achieving an average 
accuracy of 99.75% along with strong sensitivity and specificity 
under a class-oriented evaluation scheme. However, the study 
notes that performance for rare arrhythmia classes remains 
challenging and emphasizes that subject-oriented evaluation 
strategies are necessary for reliable real-time clinical deployment. 

Subsequently, R.Kumar and V. Chakrapani, presents an ECG-
based arrhythmia classification system that employs Fast Fourier 
Transform (FFT) for frequency-domain feature extraction in 
conjunction with an enhanced AlexNet convolutional neural 
network for deep learning–based classification. Using ECG 
signals from the MIT-BIH Arrhythmia Database, the proposed 
approach classifies four types of arrhythmia and reports an 
approximately 20% improvement in deviation detection compared 
with conventional methods, highlighting the potential of 
integrating spectral features with deep neural networks for 
noninvasive and early cardiac diagnosis. Despite these promising 
results, the methodology exhibits several limitations, including 
reliance on a single feature extraction technique that may neglect 
important temporal dynamics, classification restricted to a limited 
number of arrhythmia classes, and dependence on a single dataset 
without cross-database validation. Additionally, the study lacks 
comprehensive performance metrics and statistical validation, 
provides limited insight into computational requirements and 
model interpretability, and does not address real-time deployment, 
robustness to noise, or subject-oriented evaluation, thereby 
constraining its generalizability and clinical applicability 
[13].More advanced DL models have employed FFT-based 
spectral learning [14] and hybrid CNN–LSTM structures [15] for 
wearable cardiac monitoring applications. Reviews have also 
highlighted the importance of using hybrid-domain frameworks 
for enhancing interpretability and real-time processing [16]. 

Denoising techniques using DWT in combination with 
Butterworth and Notch filters have demonstrated satisfactory 
denoising and anomaly detection performance [17]. Deep learning 
architectures, including residual CNNs [18] and hybrid fusion-
based models [19], have improved classification performance on 
multi-lead ECG datasets. The ensemble learning approach has 
further increased robustness and diagnostic accuracy [20]. Recent 
advances in self-supervised learning have demonstrated high 
accuracy using a small amount of labeled data, thereby improving 
the scalability of the method for telemedicine applications [21]. 

In summary, so far, the best combination seen in the state-of-the-
art for arrhythmia detection and classification is the combination 
of wavelet transformation, frequency-domain analysis, and 
machine or deep learning techniques. Using these in combination 
with MATLAB real-time systems develops the efficient and 
interpretable ECG diagnostic tool but the main constraint is the 
excess time consumption. So there is a need to design a simpler 
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framework for cardiac health monitoring without AI Models to 
save time. 

III. METHODOLOGY 

The methodology comprises multiple steps, from data acquisition 
to signal pre-processing and then to detection. The layout starts 
with the system framework yielding the specifications of each 
stage of processing, then the Processing Pipeline demonstrating 
the flow of signal from taking input to detection of arrhythmia in 
heart beat and in last Signal Analysis depicting the diagnosis of 
heart condition via waveform.  

A. System Framework 

 1. Data Acquisition 

The ECG data are extracted from the MIT-BIH Arrhythmia 
Database, present in the PhysioNet archive, a public repository of 
physiological data relevant to biomedical research. The ECG 
signal contained in the file '103m.mat' is part of a recording 
originally sampled at 360 Hz, which is the typical sampling 
frequency of the MIT-BIH database. 
The dataset can be accessed at: 

https://physionet.org/content/?topic=MIT-
BIH+Arrhythmia+Database%2C+ 

When the .mat file is loaded, the ECG signal can be retrieved 
through the variable val, which indicates the amplitude values of 
the ECG waveform over time. This signal is normalized (dividing 
by 200) and gives rise to the var ecgsig, which is subsequently 
subjected to several preprocessing steps. 

 2. ECG Signal Preprocessing 

Various preprocessing methods are applied to the raw ECG signal 
(ecgsig) in order to suppress artifacts: 

 a) Baseline Wander Removal: 
This is implemented using the biorthogonal wavelet 
transformation. The ECG signal is decomposed into 
approximation and detail coefficients using the wavedec function 
and the 'bior3.7' wavelet, up to level 9. The detailed coefficients 
from levels 1 to 9 are aggregated using wrcoef to reconstruct the 
baseline wander component, which is saved in y0 (baseline-
corrected ECG), effectively eliminating low-frequency baseline 
drift. 

 b) Powerline Interference Removal: 
Powerline interference, typically present at 50 Hz, is addressed 
with a notch filter. An IIR notch filter is designed using an IIR 
notch, set with a notch frequency (Fnotch) of 50 Hz, a bandwidth 
(BW) of 100 Hz, and a passband attenuation (Apass) of 1 dB. This 
filter is applied to the signal from which the baseline wander has 
been removed (y0), and the resulting output is recorded in y1 
(ECG after powerline noise removal). 

 c) High-Frequency Noise Reduction: 
Additional noise removal is conducted by breaking down y1(ECG 
after powerline noise removal) with the 'bior3.7' wavelet using 
wavedec up to level 2. The approximate component obtained at 
level 2 is reconstructed through wrcoef and saved as y2 (denoised 
ECG signal), thereby smoothing the signal by eliminating high-
frequency components. 

 d) Bandpass Filtering: 
A bandpass filter is applied to y2 (denoised ECG signal) to 
preserve the clinically significant frequency components of the 
ECG signal, which typically range from 0.5 Hz to 50 Hz. A 
second-order Butterworth filter is created using butter with cutoff 
points set at 0.5 Hz and 50 Hz, normalized by half the sampling 
frequency (Fs/2). This filter is now applied to y2 (denoised ECG), 
and the final cleaned ECG signal is stored in y3 (denoised ECG). 

The ECG signal (y3) is used to identify the morphological features 
of the ECG signal. 

 e) Feature Extraction: 

The ECG signal (y3) is used to identify the morphological features 
of the ECG signal. 

i. R-peaks Detection: 
R-peaks are identified using the find peaks function, where the 
minimum peak height is set to 0.4 and the minimum distance 
between peaks is 50 samples. This allows each heartbeat to be 
detected and its R peak to be found. The location of the R-peaks is 
stored in locs_r. 

ii. P, Q, S, T Waves Detection: 
The locations and amplitudes of other key waveforms (P, Q, S, T) 
are found with respect to the located R-peaks. The steps are shown 
below. 

 S wave: Found as the lowest point of the segment 
obtained after the R-peak (15 samples). 

 Q wave: The lowest point in the segment between the R-
peak and the following R-peak, within 15 samples. 

 P wave: The highest point in a window before the Q wave 
(within 60 samples). 

 T wave: The highest point in the window before the next 
R-peak after the S wave (within 130 samples). 

The peak amplitudes and positions are saved in Speaks, locs_s, 
Ppeaks, locs_p, Tpeaks, and locs_t. 

 f) Interval Calculation: 

Using the identified peak positions, the following intervals are 
determined: 

 RR intervals: The time between successive R-peaks. 
diff(locs_r) ./ Fs (seconds). 

 QRS durations: Time between the S-wave and Q-wave 
positions. locs_s - locs_q (seconds). 

 PR intervals: Time between the location of the R-wave 
and the P-wave. locs_r - locs_p (seconds). 

 QT intervals: Time between the T-wave and the Q-wave 
positions. locs_t - locs_q (seconds). 

All the interval arrays are truncated to the minimum length so that 
they have the same length downstream. 

Heart Rate and HRV Calculation 

 Heart Rate: The heart rate, expressed in beats per minute 
(BPM), is the average of the RR intervals. 

Heart Rate (BPM)= 
60

   Mean RR interval (s)
 

 Heart Rate Variability (HRV): HRV is the standard 
deviation of the RR intervals (Std_RR) divided by the 

average RR interval: 

HRV= 
 Std-RR

Mean-RR
 

 g) Arrhythmia Detection: 

Arrhythmias are detected based on the heart rate and 
morphological characteristics of the signal. 

These are identified by applying thresholds to the heart rate and 
morphological characteristics. 

 Tachycardia: Heart rate above 100 BPM. 

 Bradycardia: Heart rate below 60 BPM 

 Atrial Fibrillation: Std_RR > 0.15 seconds. 

 Ventricular Arrhythmia / Bundle Branch Block (BBB): 
Indicated when the average QRS duration (Mean_QRS) 
surpasses 0.12 seconds. 
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 First-degree AV Block / Prolonged PR Interval: Noted 
if the average PR interval (Mean_PR) exceeds 0.2 
seconds. 

 Long QT Syndrome / Prolonged QT Interval: Indicated 
if the average QT interval (Mean_QT) goes beyond 0.44 
seconds. 

 h) Frequency-Domain Analysis: 
Results of the detections are shown with the heart rate class 
(Normal, Tachycardia, Bradycardia) if there is any atrial 
fibrillation, QRS duration abnormality, prolonged PR interval, 
prolonged QT interval, bundle branch block. 

 i) Tools and Software: 

The entire study is done in MATLAB. These functions of the 
Signal Processing Toolbox are used : 

 wavedec and wrcoef (for removing noise using 
wavelets)  

 iirnotch (for notch filtering)  

 butter (for designing Butterworth) 

 filter (for applying designed filters)  

 findpeaks (for finding R-peaks) f) fft (for doing 
frequency domain analysis) 

B. Processing Pipeline of the Proposed System 

The Processing Pipeline is a step-by-step approach to accurately 
check for heart rhythm problems using ECG signals. First, ECG 
data is collected from public databases, which show how the 
heart's electrical activity changes over time. These signals have 
different types of noise, so filtering is used to remove unwanted 
parts like baseline shifts, electrical interference from power lines, 
and muscle movement. This helps keep important parts of the 
ECG, such as the P wave, QRS complex, and T wave, clear and 
useful. After cleaning the data, features that describe the shape, 
height, and length of these ECG parts are taken to find any signs 
of heart rhythm issues. Then, time-based measurements like RR, 
PR, QRS, and QT intervals are calculated to reveal the heart beat 
and it's conduction. In addition to looking at time-based data, 
frequency-based features are also analyzed using methods like the 
Fast Fourier Transform to find rhythm problems that aren't 
obvious in the time domain. Using these features, the system tells 
the difference between normal heart rhythms and abnormal ones. 
The final results are shown in a way that's easy to understand, 
helping doctors make better decisions about patient care. The 
given figure 1. depicts this whole procedure. 

 

Figure 1:Flowchart illustrating the overall methodology of ECG signal 
processing and arrhythmia detection. 

C. Digital Signal Processing for ECG Denoising & Signal 
Analysis 

Denoising, heart rate, and QRS complex results are obtained from 
the ECG signal processing framework phases in various steps. The 
results of the processed ECG signal and extracted features are 
presented in Figure 2 below. The diagram illustrated how the ECG 
signal is processed through successive stages to filter out 
interference and other unwanted disturbances, resulting in a noise 
free signal waveform. 

Figure 2: ECG signal with artifacts and then after filtration 
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 (i) ECG Signal Denoising and Enhancement 

The first ECG signal acquired in Figure 2. is contaminated with 
different types of noise including Baseline Wande, Powerline 
Interference and high-frequency noise originating either from 
breathing, bodily movements and from muscle activity or external 
influences. The sequence of filtering operations are applied to the 
ECG signal as: 

 ECG Signal with Artifacts: The first ECG signal 
exhibited significant low-frequency drift and noise, 
obscuring the individual components of the ECG 
waveform (P wave, QRS complex, T wave). 

 After Powerline Interference Removal: The high 
amplitude 50/60 Hz sinus interference(comingfrom 
medical devices) is removed and the waveform became a 
much more uniform signal without the unnatural jumps. 

 After High-Frequency Noise Removal: Trivial, fast 
variations are removed from the signal, making the R-
peaks and other ECG morphology more visible. 

 After Bandpass Filtering: A bandpass filter (typically, 
between 0.5–100 Hz) is used to retain the clinically 
relevant signal frequency range. This last step made the 
signal sharper, enabling high-quality ECG waveform 
morphology analysis and filtering out the non-
cardiovascular. 

The filtering process ensured that the interference is removed from 
the signal without damaging the cardiac signal itself, enabling 
accurate clinical interpretation of the signal as well as further 
signal processing. 

 (ii) Heart Rate Analysis 

In Figure 3, the heart rate changes over time is observed (in BPM 
- beats per minute). Heart rate is calculated over time, and in the 
proposed methodology R-peak is detected and RR interval is 
calculated. 

 

Figure 3: Variation in heart rate with time 

Heart rate varied between 64 BPM and 72 BPM in above figure 
indicating normal heart rate(at rest). However,there is a small drop 
around the 5 seconds (around 64 BPM). This is caused by a long 
RR interval. Long RR intervals refers to natural HRV. There is no 
bradycardia (HR < 60 BPM) or tachycardia (HR > 100 BPM). This 
graph shows that the subject has a normal sinus rhythm, beating 
with a healthy variation from one beat to the next. The effective 
and accurate finding of the R-peaks proves the efficiency of the 
denoising and the peak detection algorithms. 

 (iii) QRS Duration Analysis 

The Line graph, Figure 4. shows the QRS duration measurement 
over a sequence of 10 cardiac beats. 

 

Figure 4: QRS duration Analysis (measured in milliseconds) for 10 cardiac 
cycles 

The above figure illustrates the QRS duration for ten detected 
heartbeats. The QRS duration signifies the period required for 
ventricular depolarization and serves as a crucial measure of the 
heart's electrical conduction. The recorded duration is within the 
range of 55 ms to 64 ms, which is slightly less than the normal 
adult range of 70–110 ms, indicating a narrow QRS complex. A 
narrow QRS complex typically suggested that ventricular 
depolarization is proceeding normally and swiftly through the His-
Purkinje system. There are no indications of an extended QRS 
duration, which could otherwise imply delays in conduction or 
blockages in the bundle branches. The uniformity of the QRS 
duration across the beats further validates the effectiveness of the 
peak detection algorithm and the temporal stability of the signal 
after preprocessing. The characteristics of the recorded ECG 
signal in the frequency domain are assessed by calculating the one-
sided amplitude spectrum using a Fast Fourier Transform (FFT). 
The resulting spectrum is shown in Figure 5. Basic frequency 
components are observed to be predominantly concentrated within 
40 Hz. 

 

Figure 5: The ECG signal's frequency spectrum 

 (iv) Dominant Frequency Components 

The largest non-DC peak is observed at approximately 1.2 Hz, 
which is approximately 72 beats per minute (1.2 Hz × 60 s/min). 
Other peaks around integer multiples (approximately 2.4 Hz, 3.6 
Hz, etc.) are the harmonic components of the P–QRS–T cycle. 

 (v) Energy Distribution 

Summing spectral magnitudes give the following cumulative 
energy spectrum. 

 0–1 Hz (baseline/DC): ~25% 

 1–5 Hz (fundamental + 1st harmonic): ~50% 

 5–15 Hz (details of the QRS complex): ~80% 

 15–30 Hz (T-wave and fine structure): ~95% 

 30 Hz: remaining ~5% (approaching the noise floor) 
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 (vi) High-Frequency Content 

Spectral amplitudes fell quickly beyond 40 Hz, so any 
physiological information content beyond 40 Hz can be 
considered to be insignificant. There is no significant peaks at 
50/60 Hz (power line interference) that would indicate inadequate 
noise mitigation during data acquisition or preprocessing. 

 (vii) Implications for Signal Processing 

Applying a high-pass filter at around 0.5 Hz  removes the baseline 
wander (25% energy content below 1 Hz) while preserving all of 
the cardiac signals. Meanwhile, setting a low-pass filter at 40 Hz 
would remove less than 0.1% of the physiological energy content 
in the signal, and would reduce any remaining high-frequency 
noise. Given that there may be no significant content above 50 Hz, 
the ECG data may safely be downsampling to 100–120 Hz 
sampling rate with no risk of aliasing. Thus, the relevant 
physiological information content is observed to be below 40 Hz 
with a clear fundamental frequency around 1.2 Hz. This spectral 
information provides a strong clue as to subsequent processing of 
the signal, including R-peak detection, feature extraction for 
arrhythmia classification, and time–frequency based using 
wavelets. 

IV. RESULTS 

During this study the ECG signal processing pipeline is proposed 
to profile cardiac health using both morphological and frequency 
based characteristics. Firstly, the signal is pre-processed to remove 
baseline drift, powerline interference and high frequency 
interference using biorthogonal wavelet decomposition in 
combination with digital filtering. After the denoising process, the 
P, Q, R, S and T peaks are distinctly marked and relevant intervals 
RR, PR, QRS, and QT are mined from the ECG signal. The output 
is displayed as Fig. 6, which shows ECG signal detection as 
normal, and demonstrates the effectiveness of a combination of 
wavelet based denoising and feature extraction with a rule based 
approach to arrhythmia mining. 

 

Figure 6: The shown cardiac rhythm analysis showed a regular heart rhythm 
of 70.11 beats per minute; no abnormalities are detected with regard to the 

timing and pattern of the cardiac cycle. 

In depth analysis of above figure indicates that the automated 
algorithm for arrhythmia mining returned the following results: 

i. Heart rate is on average 70.11 beats per minute (BPM), 
which is within the normal clinical range. 

ii. No signs of atrial fibrillation are detected.  

iii. The QRS duration is within the normal range, which 
indicates no abnormalities are present with regard to 
ventricular conduction. 

iv. The PR and QT intervals are not prolonged, which also 
indicates no nodal or repolarization abnormalities are 
present. Finally, no bundle branch block is detected. 

 

 

V. CONCLUSION 

This paper presents a practical framework for the analysis of ECG 
signals: a way of reconstructing raw physiological results in terms 
of reliable and automatic cardiac examination. The method 
consists of the combination of various signal processing features: 
biorthogonal wavelet denoising, a notch filter to remove 
interference, adaptive peak detection, and frequency analysis. 
Used together they succeed in cleaning the ECG signal without 
destroying the small and valuable waveform features which the 
clinician makes use of.  

One of the merits of the system lies in its ability to detect in real 
time PQRST segments and also to measure these intervals as RR, 
PR, QRS, and QT with fairly accurate results. These 
measurements are important in finding abnormalities in rhythm 
and conduction. The arrhythmia detection method is grounded in 
established clinical reference patterns. Preliminary results 
demonstrate its ability to differentiate between normal sinus 
rhythm and clinically significant abnormalities, including atrial 
fibrillation and conduction defects. Although the method is not 
intended to replace a cardiologist’s clinical judgment, it provides 
a rapid and consistent preliminary assessment that may support 
clinical decision-making. The frequency domain results also 
support the findings in the time domain. Concordance between the 
time-domain and frequency-domain analyses provides assurance 
that the system’s response is not attributable to noise fitting. Also, 
the response is rapid enough in processing to be applicable to real 
time monitoring, remote hospital systems, or even to wearables 
where processing limitations apply. This combination of reliability 
and computing practicalities can include testing with larger and 
more varied patient sets in future. Subsequently, implementing 
deep learning can lead to more depth in the detection of arrhythmia 
and to move from offline analysis to completely embedded real-
time implementations. 
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