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A Novel Framework for ECG Signal Processing
and Robust Arrhythmia Detection
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Abstract: Cardiovascular diseases are still one of the most important
public health issues that the world is facing today. Early
identification of heart problems can help with early diagnosis.
Analyzing the electrical signals created by the heart can provide
important insight into how well a person's heart is functioning. The
electrical signals generated by the heart can be disrupted by noise
and interference, which effects the interpretation of these signals.
This paper reveals a novel approach to process bio signals to uncover
the presence of abnormal heart rhythms based on abnormally fast,
slow, or irregular heartbeat patterns. The results of the experimental
evaluations demonstrate that out of total 10 participants, 6
individuals have a normal heart pattern while the heart rate analysis
of remaining 4 individuals indicates that they are having
arrhythmia. Thus, the method used in this study successfully
distinguishes between normal and abnormal cardiac conditions.
This publication provides an overview of the potential use of signal
processing to assist with early diagnosis of heart problems and
improve ongoing monitoring of patients' health in both clinical and
remote settings.
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I.  INTRODUCTION

Cardiovascular Disease (CVD) are still the leading cause of death
in the world with millions of people died each year [1],[2]. It
encompasses a wide variety of conditions impacting both the heart
and blood vessels. Included within CVD are the following:
coronary arteries, heart failure and arrhythmias (rhythm problems)
[1]-[5]. Atherosclerosis, Hypertension (high blood pressure),
Diabetes Mellitus, Smoking, and a Sedentary Lifestyle are the
multiple factors that deteriorate the cardiac health. As the heart
becomes less efficient at pumping blood, these factors could
ultimately result in conditions including Myocardial Ischemia
(reduced flow of oxygenated blood to the heart), Ventricular
Dysfunction (inability of the ventricles to contract), or Sudden
Cardiac Death [1], [2]. Patients with declining cardiac output (CO)
become fatigued, and have difficulty in breathing (dyspnea)[6].
They do not tolerate excessive physical activity, even their
ambulation pattern is altered resulting in decreased step length [7].
Untreated myocardial infarction (MI, or heart attack) and
malignant arrhythmia's lead to urgent medical situations that may
have a very high likelihood of sudden death [1],[3].
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Arrhythmia is a condition in which heart beat is altered and is
categorized into Bradycardia and Tachycardia. The Bradycardia is
a condition when a person's heart beats slower than the normal,
usually less than 60 times per minute (bpm). This decreases the
cardiac output (CO), which in severe cases may result in dizziness,
fainting (syncope), low blood pressure (hypo-tension), and in
extreme cases heart failure or asystole [2],[3]. Tachycardia is
when a person's heart beats too fast usually greater than 100 bpm
[2][4]. Conversely, long-term fast heart rates increase diastolic
filling time (DFT) and the MYO: demand on the heart thereby
increasing the likelihood of ischemia (inadequate blood flow), the
development of tachycardia-induced cardiomyopathy (disease of
the heart muscle due to rapid heart beat) and the occurrence of
premature ventricular contractions (PVCs) and sudden cardiac
death (SCD)[2][3]. Abnormalities in heart rates are usually
associated with changes in the shape of the QRS complex (QRS
morphology) and changes in the beat-to-beat intervals (RR-
interval variability), both of which are critical elements in current
frameworks for feature extraction such as Efficient QRS
Morphology (E-QRSM) for the classification of PVCs [1],[3].
Thus, analyzing these waves are crucial to forecast the activity of
heart.

An electrocardiogram is a non-invasive tool to record the heart's
electrical impulses. The P wave shows that the atria have been
depolarized; the QRS complex indicates that the ventricles have
been depolarized; and the T wave shows that the ventricles have
been repolarized [3]-[5]. An ECG during bradycardia may show
RR interval (that is the interval between R peaks) being prolonged,
heart rate being significantly less than the average (in BPM). The
output also displays the following "rhythms" that may have
occurred during the ECG: sinus pauses, escape beats, and
conduction delays; e.g. prolonged PR interval (AV nodes for
Atrial Ventricular Conduction) or Bundle Branch Block (BBB)
which can easily be identified by measuring a QRS that is greater
than 120 ms in duration[2]. When someone has tachycardia, their
RR (R-to-R) intervals shorten and there are several RR's separated
by longer than usual amounts of time (i.e., several QRS
complexes). In the case of supraventricular tachycardia (SVT),
when taking the lead Il ECG, the QRS complex is narrow; whereas
when taking a ventricular tachycardia (VT) lead 1l ECG, the QRS
complex widens and have an abnormally large, rounded
morphology [2],[3]. To explore these differences accurately,
advanced filtering techniques must be incorporated that remove
noise caused by random motion of the heart muscle or skeletal
muscles (electromyography noise - EMG noise), 50/60Hz
powerline interference (PLI), or any other forms of noise. Along-
with the filtration technique during the processing of bio-signals,
denoising filter techniques must also be employed including the
stationary wavelet transform (SWT), notch filter, and robust
Neville aggregation (RNA) operator so that the most
diagnostically important features of the ECG, namely the P-, QRS-
, and T-waveforms, are preserved for measuring the following
intervals: PR, QT, QRS, and RR.[3],[4]. In parallel with this, time-
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frequency transforms of greater sophistication (such as continuous
wavelet transform (CWT), short-time Fourier transform (STFT),
and plotting of FFT-derived spectra) are being widely applied to
generate two-dimensional scalograms or spectrograms from one-
dimensional ECG waveforms, with the intent of capturing the
arrhythmia both temporally and spectrally [5].

Numerous well-established ECG repositories provide large-scale
electrocardiographic data (e.g., MIT-BIH AR and PTB DB) and
routinely demonstrate that the majority of patients from diverse
backgrounds exhibit at least one form of clinically significant
arrhythmia [1],[3],[5].For digital signal processing of ECG either
the data from these repositories are extracted or can directly fetch
from hospitals. Recent studies indicate that QRS-feature-
extraction software applications (e.g., E-QRS-M) and advanced
versions of the R-peak detectors have enhanced performance
compared to the legacy method. Additionally, contemporary
technology allows use of complex methods (e.g., SWT-based
filters, RNA-based PLI suppression, CWT/FFT/STFT) that utilize
sequential, 2D convolutional neural network (CNN) calculation
methods, which have provided significant improvements over
conventional techniques for detecting arrhythmias from short
segment ECG [1],[5]. The technology's emergence demonstrates
how Al-enabled ECG analysis systems are becoming an essential
part of CAD that will alleviate the burden on physicians'
workloads as well as provide for earlier medical interventions that
reduce the risk of morbidity and death associated with CVDs [1]-

[5]-
Il. LITERATURE REVIEW

An electrocardiogram (ECG) is widely used to diagnose cardiac
disorders. Many algorithms have been employed to improve the
analysis of ECG signal so that maximum information regarding
cardiac condition can be extracted. Some of the latest approaches
to dig out the bio-signal evaluation are listed here along with the
algorithms implemented. D. Zhai et al.,[8] employed the Pan-
Tompkins algorithm in detecting the QRS complex. It shows the
optimum results but its performance is limited because of fixed
threshold and its sensitivity to noise .

Due to the non-stationary nature of ECG signals, wavelet-based
techniques are widely used for ECG signal processing. The
Discrete Wavelet Transform (DWT) and Continuous Wavelet
Transform (CWT) enable the analysis of multi-resolution ECG
signals, facilitating the accurate detection of different ECG
components, such as P, Q, R, S, and T waves [9], [10]. The unique
properties of Wavelet Transforms allow the alleviation of noise
while retaining the most significant Morphological Characteristics
of ECG Signals. Along with the implementation of multiple bio
signal processing techniques in time & frequency domain, the
advent of Machine Learning and Deep Learning has transformed
the automatic interpretations of ECG signal. Thus, merging these
time & frequency domain approaches with machine learning and
deep learning model boosts the performance. S. C. Mohonta et
al.,[9] et al. proposed a hybrid deep learning framework for ECG-
based arrhythmia classification that integrates the Continuous
Wavelet Transform (CWT) with a two-dimensional Convolutional
Neural Network (2D-CNN). The ECG signals were obtained from
the MIT-BIH Arrhythmia Database, comprising 23 recordings of
30 minutes duration each, sampled at 360 Hz. The study
highlighted the effectiveness of CWT in multi-resolution signal
analysis, as it preserves detailed time—frequency information
while mitigating motion artifacts that commonly affect FFT and
STFT methods, particularly at low frequencies. The proposed
CWT-RGB model (TN4) demonstrated superior performance,
achieving an average sensitivity of 98.87%, specificity of 99.85%,
and overall accuracy of 99.65%. Despite these results, the
approach is limited by the restricted diversity of arrhythmia classes
and the relatively small dataset, consisting of approximately 7,500
signal segments derived from only 23 recordings. Hybrid Models,

such as developing a Combined Statistical, Spectral and
Morphological Feature Set and a Machine Learning Classifier, for
example, SVM and ANFIS, have been shown to improve
classification performance for arrhythmias [11],[12].

S. Abagaro et al.,[12] in a research study proposes a hybrid ECG-
based arrhythmia classification framework that integrates
morphological and dynamic features to improve diagnostic
performance. Morphological characteristics are extracted from
individual heartbeats using the Discrete Wavelet Transform
(DWT), followed by Independent Component Analysis (ICA) for
dimensionality reduction, resulting in a compact set of
representative features. Dynamic information is derived from RR
intervals, with nonlinear temporal behavior captured using the
Teager Energy Operator (TEO) and multiple RR-based
descriptors, including previous, subsequent, average, and local
intervals. The combined feature set is classified using a deep
feedforward neural network with ReLU and sigmoid activation
functions. The approach demonstrates high performance on
benchmark MIT-BIH arrhythmia datasets, achieving an average
accuracy of 99.75% along with strong sensitivity and specificity
under a class-oriented evaluation scheme. However, the study
notes that performance for rare arrhythmia classes remains
challenging and emphasizes that subject-oriented evaluation
strategies are necessary for reliable real-time clinical deployment.

Subsequently, R.Kumar and V. Chakrapani, presents an ECG-
based arrhythmia classification system that employs Fast Fourier
Transform (FFT) for frequency-domain feature extraction in
conjunction with an enhanced AlexNet convolutional neural
network for deep learning-based classification. Using ECG
signals from the MIT-BIH Arrhythmia Database, the proposed
approach classifies four types of arrhythmia and reports an
approximately 20% improvement in deviation detection compared
with conventional methods, highlighting the potential of
integrating spectral features with deep neural networks for
noninvasive and early cardiac diagnosis. Despite these promising
results, the methodology exhibits several limitations, including
reliance on a single feature extraction technique that may neglect
important temporal dynamics, classification restricted to a limited
number of arrhythmia classes, and dependence on a single dataset
without cross-database validation. Additionally, the study lacks
comprehensive performance metrics and statistical validation,
provides limited insight into computational requirements and
model interpretability, and does not address real-time deployment,
robustness to noise, or subject-oriented evaluation, thereby
constraining its generalizability and clinical applicability
[13].More advanced DL models have employed FFT-based
spectral learning [14] and hybrid CNN-LSTM structures [15] for
wearable cardiac monitoring applications. Reviews have also
highlighted the importance of using hybrid-domain frameworks
for enhancing interpretability and real-time processing [16].

Denoising techniques using DWT in combination with
Butterworth and Notch filters have demonstrated satisfactory
denoising and anomaly detection performance [17]. Deep learning
architectures, including residual CNNs [18] and hybrid fusion-
based models [19], have improved classification performance on
multi-lead ECG datasets. The ensemble learning approach has
further increased robustness and diagnostic accuracy [20]. Recent
advances in self-supervised learning have demonstrated high
accuracy using a small amount of labeled data, thereby improving
the scalability of the method for telemedicine applications [21].

In summary, so far, the best combination seen in the state-of-the-
art for arrhythmia detection and classification is the combination
of wavelet transformation, frequency-domain analysis, and
machine or deep learning techniques. Using these in combination
with MATLAB real-time systems develops the efficient and
interpretable ECG diagnostic tool but the main constraint is the
excess time consumption. So there is a need to design a simpler
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framework for cardiac health monitoring without Al Models to
save time.

. METHODOLOGY

The methodology comprises multiple steps, from data acquisition
to signal pre-processing and then to detection. The layout starts
with the system framework yielding the specifications of each
stage of processing, then the Processing Pipeline demonstrating
the flow of signal from taking input to detection of arrhythmia in
heart beat and in last Signal Analysis depicting the diagnosis of
heart condition via waveform.

A. System Framework
1. Data Acquisition

The ECG data are extracted from the MIT-BIH Arrhythmia
Database, present in the PhysioNet archive, a public repository of
physiological data relevant to biomedical research. The ECG
signal contained in the file '103m.mat' is part of a recording
originally sampled at 360 Hz, which is the typical sampling
frequency of the MIT-BIH database.

The dataset can be accessed at:

https://physionet.org/content/?topic=MIT-
BIH+Arrhythmia+Database%2C+

When the .mat file is loaded, the ECG signal can be retrieved
through the variable val, which indicates the amplitude values of
the ECG waveform over time. This signal is normalized (dividing
by 200) and gives rise to the var ecgsig, which is subsequently
subjected to several preprocessing steps.

2. ECG Signal Preprocessing

Various preprocessing methods are applied to the raw ECG signal
(ecgsig) in order to suppress artifacts:

a) Baseline Wander Removal:

This is implemented using the biorthogonal wavelet
transformation. The ECG signal is decomposed into
approximation and detail coefficients using the wavedec function
and the 'bior3.7' wavelet, up to level 9. The detailed coefficients
from levels 1 to 9 are aggregated using wrcoef to reconstruct the
baseline wander component, which is saved in y0 (baseline-
corrected ECG), effectively eliminating low-frequency baseline
drift.

b) Powerline Interference Removal:

Powerline interference, typically present at 50 Hz, is addressed
with a notch filter. An IIR notch filter is designed using an IIR
notch, set with a notch frequency (Fnotch) of 50 Hz, a bandwidth
(BW) of 100 Hz, and a passband attenuation (Apass) of 1 dB. This
filter is applied to the signal from which the baseline wander has
been removed (y0), and the resulting output is recorded in yl1
(ECG after powerline noise removal).

c) High-Frequency Noise Reduction:
Additional noise removal is conducted by breaking down y1(ECG
after powerline noise removal) with the 'bior3.7" wavelet using
wavedec up to level 2. The approximate component obtained at
level 2 is reconstructed through wrcoef and saved as y2 (denoised
ECG signal), thereby smoothing the signal by eliminating high-
frequency components.

d) Bandpass Filtering:
A bandpass filter is applied to y2 (denoised ECG signal) to
preserve the clinically significant frequency components of the
ECG signal, which typically range from 0.5 Hz to 50 Hz. A
second-order Butterworth filter is created using butter with cutoff
points set at 0.5 Hz and 50 Hz, normalized by half the sampling
frequency (Fs/2). This filter is now applied to y2 (denoised ECG),
and the final cleaned ECG signal is stored in y3 (denoised ECG).

The ECG signal (y3) is used to identify the morphological features
of the ECG signal.

e) Feature Extraction:

The ECG signal (y3) is used to identify the morphological features
of the ECG signal.

i. R-peaks Detection:

R-peaks are identified using the find peaks function, where the
minimum peak height is set to 0.4 and the minimum distance
between peaks is 50 samples. This allows each heartbeat to be
detected and its R peak to be found. The location of the R-peaks is
stored in locs_r.

ii. P, Q, S, T Waves Detection:

The locations and amplitudes of other key waveforms (P, Q, S, T)
are found with respect to the located R-peaks. The steps are shown
below.

e S wave: Found as the lowest point of the segment
obtained after the R-peak (15 samples).
e Qwave: The lowest point in the segment between the R-
peak and the following R-peak, within 15 samples.
e P wave: The highest point in a window before the Q wave
(within 60 samples).
e T wave: The highest point in the window before the next
R-peak after the S wave (within 130 samples).
The peak amplitudes and positions are saved in Speaks, locs_s,
Ppeaks, locs_p, Tpeaks, and locs_t.

f) Interval Calculation:

Using the identified peak positions, the following intervals are
determined:

e RR intervals: The time between successive R-peaks.
diff(locs_r) ./ Fs (seconds).
e QRS durations: Time between the S-wave and Q-wave
positions. locs_s - locs_q (seconds).
e PR intervals: Time between the location of the R-wave
and the P-wave. locs_r - locs_p (seconds).
e QT intervals: Time between the T-wave and the Q-wave
positions. locs_t - locs_q (seconds).
All the interval arrays are truncated to the minimum length so that
they have the same length downstream.

Heart Rate and HRV Calculation
e Heart Rate: The heart rate, expressed in beats per minute
(BPM), is the average of the RR intervals.

60
Mean RR interval (s)

e Heart Rate Variability (HRV): HRV is the standard
deviation of the RR intervals (Std_RR) divided by the
average RR interval:

Heart Rate (BPM)=

HRY= _SU-RR

- Mean-RR

g) Arrhythmia Detection:

Arrhythmias are detected based on the heart rate and
morphological characteristics of the signal.

These are identified by applying thresholds to the heart rate and
morphological characteristics.

Tachycardia: Heart rate above 100 BPM.

Bradycardia: Heart rate below 60 BPM

Atrial Fibrillation: Std_RR > 0.15 seconds.
Ventricular Arrhythmia / Bundle Branch Block (BBB):
Indicated when the average QRS duration (Mean_QRS)
surpasses 0.12 seconds.
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e First-degree AV Block / Prolonged PR Interval: Noted
if the average PR interval (Mean_PR) exceeds 0.2
seconds.

e Long QT Syndrome / Prolonged QT Interval: Indicated
if the average QT interval (Mean_QT) goes beyond 0.44
seconds.

h) Frequency-Domain Analysis:
Results of the detections are shown with the heart rate class
(Normal, Tachycardia, Bradycardia) if there is any atrial
fibrillation, QRS duration abnormality, prolonged PR interval,
prolonged QT interval, bundle branch block.

i) Tools and Software:

The entire study is done in MATLAB. These functions of the
Signal Processing Toolbox are used :

o wavedec and wrcoef (for removing noise using
wavelets)
iirnotch (for notch filtering)
butter (for designing Butterworth)
filter (for applying designed filters)
findpeaks (for finding R-peaks) f) fft (for doing
frequency domain analysis)

B. Processing Pipeline of the Proposed System

The Processing Pipeline is a step-by-step approach to accurately
check for heart rhythm problems using ECG signals. First, ECG
data is collected from public databases, which show how the
heart's electrical activity changes over time. These signals have
different types of noise, so filtering is used to remove unwanted
parts like baseline shifts, electrical interference from power lines,
and muscle movement. This helps keep important parts of the
ECG, such as the P wave, QRS complex, and T wave, clear and
useful. After cleaning the data, features that describe the shape,
height, and length of these ECG parts are taken to find any signs
of heart rhythm issues. Then, time-based measurements like RR,
PR, QRS, and QT intervals are calculated to reveal the heart beat
and it's conduction. In addition to looking at time-based data,
frequency-based features are also analyzed using methods like the
Fast Fourier Transform to find rhythm problems that aren't
obvious in the time domain. Using these features, the system tells
the difference between normal heart rhythms and abnormal ones.
The final results are shown in a way that's easy to understand,
helping doctors make better decisions about patient care. The
given figure 1. depicts this whole procedure.
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Figure 1:Flowchart illustrating the overall methodology of ECG signal
processing and arrhythmia detection.

C. Digital Signal Processing for ECG Denoising & Signal
Analysis

Denoising, heart rate, and QRS complex results are obtained from
the ECG signal processing framework phases in various steps. The
results of the processed ECG signal and extracted features are
presented in Figure 2 below. The diagram illustrated how the ECG
signal is processed through successive stages to filter out
interference and other unwanted disturbances, resulting in a noise
free signal waveform.
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Figure 2: ECG signal with artifacts and then after filtration
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(i) ECG Signal Denoising and Enhancement

The first ECG signal acquired in Figure 2. is contaminated with
different types of noise including Baseline Wande, Powerline
Interference and high-frequency noise originating either from
breathing, bodily movements and from muscle activity or external
influences. The sequence of filtering operations are applied to the
ECG signal as:

e ECG Signal with Artifacts: The first ECG signal
exhibited significant low-frequency drift and noise,
obscuring the individual components of the ECG
waveform (P wave, QRS complex, T wave).

e After Powerline Interference Removal: The high
amplitude 50/60 Hz sinus interference(comingfrom
medical devices) is removed and the waveform became a
much more uniform signal without the unnatural jumps.

e After High-Frequency Noise Removal: Trivial, fast
variations are removed from the signal, making the R-
peaks and other ECG morphology more visible.

e After Bandpass Filtering: A bandpass filter (typically,
between 0.5-100 Hz) is used to retain the clinically
relevant signal frequency range. This last step made the
signal sharper, enabling high-quality ECG waveform
morphology analysis and filtering out the non-
cardiovascular.

The filtering process ensured that the interference is removed from
the signal without damaging the cardiac signal itself, enabling
accurate clinical interpretation of the signal as well as further
signal processing.

(i) Heart Rate Analysis

In Figure 3, the heart rate changes over time is observed (in BPM
- beats per minute). Heart rate is calculated over time, and in the
proposed methodology R-peak is detected and RR interval is
calculated.

Heart Rate vs Time
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Figure 3: Variation in heart rate with time

Heart rate varied between 64 BPM and 72 BPM in above figure
indicating normal heart rate(at rest). However,there is a small drop
around the 5 seconds (around 64 BPM). This is caused by a long
RR interval. Long RR intervals refers to natural HRV. There is no
bradycardia (HR < 60 BPM) or tachycardia (HR > 100 BPM). This
graph shows that the subject has a normal sinus rhythm, beating
with a healthy variation from one beat to the next. The effective
and accurate finding of the R-peaks proves the efficiency of the
denoising and the peak detection algorithms.

(iif) QRS Duration Analysis

The Line graph, Figure 4. shows the QRS duration measurement
over a sequence of 10 cardiac beats.
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Figure 4: QRS duration Analysis (measured in milliseconds) for 10 cardiac
cycles

The above figure illustrates the QRS duration for ten detected
heartbeats. The QRS duration signifies the period required for
ventricular depolarization and serves as a crucial measure of the
heart's electrical conduction. The recorded duration is within the
range of 55 ms to 64 ms, which is slightly less than the normal
adult range of 70-110 ms, indicating a narrow QRS complex. A
narrov. QRS complex typically suggested that ventricular
depolarization is proceeding normally and swiftly through the His-
Purkinje system. There are no indications of an extended QRS
duration, which could otherwise imply delays in conduction or
blockages in the bundle branches. The uniformity of the QRS
duration across the beats further validates the effectiveness of the
peak detection algorithm and the temporal stability of the signal
after preprocessing. The characteristics of the recorded ECG
signal in the frequency domain are assessed by calculating the one-
sided amplitude spectrum using a Fast Fourier Transform (FFT).
The resulting spectrum is shown in Figure 5. Basic frequency
components are observed to be predominantly concentrated within
40 Hz.

0.06 Frequency Spectrum of ECG Signal
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Frequency (Hz)

Figure 5: The ECG signal's frequency spectrum
(iv) Dominant Frequency Components

The largest non-DC peak is observed at approximately 1.2 Hz,
which is approximately 72 beats per minute (1.2 Hz x 60 s/min).
Other peaks around integer multiples (approximately 2.4 Hz, 3.6
Hz, etc.) are the harmonic components of the P-QRS-T cycle.

(v) Energy Distribution

Summing spectral magnitudes give the following cumulative
energy spectrum.

0-1 Hz (baseline/DC): ~25%

1-5 Hz (fundamental + 1st harmonic): ~50%

5-15 Hz (details of the QRS complex): ~80%
15-30 Hz (T-wave and fine structure): ~95%

30 Hz: remaining ~5% (approaching the noise floor)
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(vi) High-Frequency Content

Spectral amplitudes fell quickly beyond 40 Hz, so any
physiological information content beyond 40 Hz can be
considered to be insignificant. There is no significant peaks at
50/60 Hz (power line interference) that would indicate inadequate
noise mitigation during data acquisition or preprocessing.

(vii) Implications for Signal Processing

Applying a high-pass filter at around 0.5 Hz removes the baseline
wander (25% energy content below 1 Hz) while preserving all of
the cardiac signals. Meanwhile, setting a low-pass filter at 40 Hz
would remove less than 0.1% of the physiological energy content
in the signal, and would reduce any remaining high-frequency
noise. Given that there may be no significant content above 50 Hz,
the ECG data may safely be downsampling to 100-120 Hz
sampling rate with no risk of aliasing. Thus, the relevant
physiological information content is observed to be below 40 Hz
with a clear fundamental frequency around 1.2 Hz. This spectral
information provides a strong clue as to subsequent processing of
the signal, including R-peak detection, feature extraction for
arrhythmia classification, and time—frequency based using
wavelets.

IV.RESULTS

During this study the ECG signal processing pipeline is proposed
to profile cardiac health using both morphological and frequency
based characteristics. Firstly, the signal is pre-processed to remove
baseline drift, powerline interference and high frequency
interference using biorthogonal wavelet decomposition in
combination with digital filtering. After the denoising process, the
P, Q, R, Sand T peaks are distinctly marked and relevant intervals
RR, PR, QRS, and QT are mined from the ECG signal. The output
is displayed as Fig. 6, which shows ECG signal detection as
normal, and demonstrates the effectiveness of a combination of
wavelet based denoising and feature extraction with a rule based
approach to arrhythmia mining.

Command Window

Arrhythmia Detection Results:
Heart Rate: 70.11 BPM (Normal)
Atrial Fibrillation Detected:
Abnormal QRS Duration:
Prolonged PR Interval: false

false
false

Prolonged QT Interval: false
Bundle Branch Block Detected:
>>

Figure 6: The shown cardiac rhythm analysis showed a regular heart rhythm
of 70.11 beats per minute; no abnormalities are detected with regard to the
timing and pattern of the cardiac cycle.

false

In depth analysis of above figure indicates that the automated
algorithm for arrhythmia mining returned the following results:

i. Heart rate is on average 70.11 beats per minute (BPM),
which is within the normal clinical range.

ii. No signs of atrial fibrillation are detected.

iii. The QRS duration is within the normal range, which
indicates no abnormalities are present with regard to
ventricular conduction.

iv. The PR and QT intervals are not prolonged, which also
indicates no nodal or repolarization abnormalities are
present. Finally, no bundle branch block is detected.

V. CONCLUSION

This paper presents a practical framework for the analysis of ECG
signals: a way of reconstructing raw physiological results in terms
of reliable and automatic cardiac examination. The method
consists of the combination of various signal processing features:
biorthogonal wavelet denoising, a notch filter to remove
interference, adaptive peak detection, and frequency analysis.
Used together they succeed in cleaning the ECG signal without
destroying the small and valuable waveform features which the
clinician makes use of.

One of the merits of the system lies in its ability to detect in real
time PQRST segments and also to measure these intervals as RR,
PR, QRS, and QT with fairly accurate results. These
measurements are important in finding abnormalities in rhythm
and conduction. The arrhythmia detection method is grounded in
established clinical reference patterns. Preliminary results
demonstrate its ability to differentiate between normal sinus
rhythm and clinically significant abnormalities, including atrial
fibrillation and conduction defects. Although the method is not
intended to replace a cardiologist’s clinical judgment, it provides
a rapid and consistent preliminary assessment that may support
clinical decision-making. The frequency domain results also
support the findings in the time domain. Concordance between the
time-domain and frequency-domain analyses provides assurance
that the system’s response is not attributable to noise fitting. Also,
the response is rapid enough in processing to be applicable to real
time monitoring, remote hospital systems, or even to wearables
where processing limitations apply. This combination of reliability
and computing practicalities can include testing with larger and
more varied patient sets in future. Subsequently, implementing
deep learning can lead to more depth in the detection of arrhythmia
and to move from offline analysis to completely embedded real-
time implementations.
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