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Abstract: In this paper, in a highway scenario, the network 

connectivity problem is considered and developed a 

mathematical model to investigate the vehicles steady-state 

probability of connectivity in a one-directional road 

segment with one underpass. In the mathematical model, on 

the road the underpass is equally dispersed and distribute 

the road into two segments. The vehicles arrival follow 

Poisson process, on each segment. A vehicle drives towards 

the underpass with a specified probability. On the basis of 

these assumptions, we study various situations based on 

position distribution of the underpass, also takes into 

account the speed of vehicles, arrival rate of vehicles, 

impact of road length, and the probability of the vehicles 

driving towards the underpass and leave, in deriving the 

probability of connectivity. The derived mathematical 

model is validated over simulation results and the effects of 

numerous factors on the probability of connectivity are 

examined by both analytical and simulation results. 
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I. INTRODUCTION 

The most significant problem in vehicular ad hoc networks 

(VANETs) is connectivity of the network [1], [2]. Because of 

the dynamic movement of vehicles, the network connectivity 

often remains intermittent, which in result degrades the 

performance of network in terms of throughput and data 

delivery. This is the reason, that connectivity of network has 

been extensively considered for various road environments in 

VANET [3-15]. Most of the studies were considering the 

unrealistic simple highway scenarios without underpasses. 

Actually, in realistic scenarios, a highway has underpasses 

situated at various points. On each underpass, vehicles might 

arrive, depart, or stay on the road, which results in highly 

dynamic network connectivity. Hence, it is beneficial and 

interesting to investigate the connectivity of the network 

considering underpasses in a highway environment, and this 

motivates our work.  
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In this paper, in a highway scenario, the network connectivity 

problem is studied by considering underpass on a one-

directional road segment. A mathematical model is developed 

to investigate the vehicles steady-state probability of 

connectivity on the road segment. In the proposed model, we 

suppose on the flyover underpass is equally dispersed and 

distribute the road into two segments. The arrival of vehicles 

follow Poisson process with various arrival rates on the two 

segments of road, respectively, and a vehicle drives towards the 

underpass with a specified probability. We study various 

situations based on position distribution of the underpass, also 

takes into account the speed of vehicles, arrival rate of vehicles, 

and the probability of the vehicles driving towards the 

underpass and leave, in deriving the probability of connectivity. 

The derived mathematical model is validated through 

simulation results and the effects of various factors on the 

probability of connectivity are individually examined by 

equally analytical and simulation results. 

The rest of the paper is structured as follows. 

Section 2 the related work is reviewed. Section 3 mathematical 

model is derived and the probability of connectivity is 

analyzed. Section 4 the accurateness of the mathematical model 

is confirmed over simulation results. Section 5 concludes the 

paper. 

II. LITERATURE REVEIW 

In VANET for a highway scenario connectivity analysis has 

been extensively considered by the researchers [3-17]. The 

authors in [3], discussed that when the headway distance 

follows unrelated statistical distributions how the connectivity 

of the network in a highway environment will change. The 

authors in [4], proposed a mathematical model to study the 

vehicle's connectivity on a highway segment and revealed that 

when the network density is high even a trivial increase in 

communication range results in increasing connectivity 

probability. The authors in [5], studied the effects of vehicle 

communication range and vehicles average speed on the 

probability of connectivity in a one-dimensional network. The 

authors in [6], examined the interrelation between the 

probability of connectivity and the core parameters, such as 

network coverage of the regular vehicle and traffic density. 

Also highlighted the connectivity characteristics of the platoon 

based networks. The authors in [7], studied connectivity in the 

uni-directional highway road environment and presented an 

analytical model. To define the interrelation amongst the 

probability of connectivity, the model considered several 

parameters, such as traffic density, communication range, and 

vehicle speed distribution. According to the authors of [8], a 

mobile linear network was used as a platform for studying and 

evaluating the statistical properties of connectivity and the 

distribution of nodes in a steady state, under a strict delay 

constraint and increased mobility of nodes. However, the 

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 2 51



 

above-mentioned studies considered the performance of 

connectivity of an unremitting highway situation with no 

underpasses. The authors in [9], with multiple entries and exits, 

developed a performance model of connectivity in a highway 

scenario and given the nodes location distribution. Also, they 

focused on connectivity statistical properties, comprising a 

vehicle which is random that could see the entire vehicle 

population in a single cluster and the average clusters size. The 

authors in [10], proposed an methodical model to compute the 

two-hop downlink probability of connectivity, by considering 

the traffic distribution, road condition, and capability of 

vehicles. In our previous work [11], we highlighted the issues 

of network connectivity in a highway scenario considering toll 

plaza, where toll plaza could help the vehicles reduce the speed 

instead of blocking the flow of traffic to avoid traffic 

congestion. We developed a mathematical model to derive the 

probability of connectivity by taking into account various 

significant parameters, such as arrival rate of vehicles, speed, 

transmission range, and road length. Not the same as [11], in 

this paper, we considered the different use case scenario by 

taking into account underpasses on the highway. 

 

III. CONNECTIVITY MATHEMATICAL MODEL 

In this section, we familiarize the system design and network 

scenario. Then we perform the connectivity probability 

analysis of the vehicles driving on the one-directional road 

segment considering underpass in detail.    

3.1 System Design  

As depicted in Figure 1, the system design considers a one-

directional highway segment including one underpass equally 

dispersed on the road segment. We denote the road segment 

by [𝟎, 𝑳], where the road segment length is 𝑳. The underpass is 

positioned at 𝒚(𝒚 𝝐[𝟎, 𝑳]). The underpass can divide the whole 

segment of road into two sub-segments: [𝟎, 𝒚] and [𝒚, 𝑳]. The 

arrival of vehicles follows a Poisson process on 

segment [𝟎, 𝒚] with a mean arrival rate 𝛌𝟏. Once a vehicle 

in [𝟎, 𝒚] drive towards the underpass, it will keep on driving 

with probability 𝜶(𝟎 ≤ 𝜶 ≤ 𝟏) towards segment [𝒚, 𝑳] or with 

probability 𝟏 − 𝜶 leave the road. The vehicles availability on 

segment [𝒚, 𝑳] is based on two parts: one includes those 

vehicles which are traveling from segment [𝟎, 𝒚] and keep on 

traveling towards segment [𝒚, 𝑳]; and the other one include 

those new vehicles which are coming from the underpass. The 

arrival of new vehicles follows a Poisson process with mean 

arrival rate 𝛌𝟐 on segment [𝒚, 𝑳]. When the 

segment [𝒚, 𝑳] ends, all the vehicles will leave the road 

segment. Same as [8], suppose that at the location 𝒚(𝟎 ≤ 𝒚 ≤
𝑳) the speed of vehicles is a random variable on the road that is 

indicated as 𝒗(𝒓). Hence, 𝒗 = 𝑬[𝒗(𝒓)] indicates the average 

speed of the vehicles on the road, where the operation of 

mathematical expectation is given as 𝑬[·]. 

By considering the assumptions above, based on [8], [9], it 

could be easy to achieve in a steady state that the arrival of 

vehicles on segment [𝟎, 𝒚] and segment [𝒚, 𝑳] with mean rates 

follow a Poisson process respectively. Also, we suppose that 

the vehicle transmission range is 𝑽𝒓. 

𝛾1 
λ1

𝑣
 and 𝛾2 

𝛼.𝜆1+𝜆2

𝑣
 

 

 

3.2 problem statement  

 The problem of network connectivity is considered on the 

segment of road as depicted in Figure 1 and focusing on 

building a mathematical model to perform the network 

connectivity analysis of the vehicles traveling on the road 

segment. Here, two vehicles will be connected if the 

transmission range of a vehicle is greater than the distance 

amongst them. On the road segment, entire vehicles will be 

connected, if any two neighboring vehicles are connected. If all 

the vehicles on the road segment are connected, the segment 

will be connected. The network will be connected, when all the 

segments are connected.  

 

Figure 1. System Model. 

In this section, we provide a detailed overview of the modelling 

of the COVID-19 cases dataset as a weighted two-mode 

(bipartite) network. Usually, the two-mode network comprises 

two disjoint sets of nodes namely primary (top) nodes 𝑇 and 

secondary (bottom) nodes. The nodes in the primary set 

establish the connection with the nodes of the secondary sets 

and vice versa. No pair of nodes have a connection in the same 

set of nodes [3]. However, there are many examples in the real 

world network such as actors-movie, authors-books, scientific 

collaboration networks, air transportation, etc. These networks 

are constructed using the graph theory. In the graph theory, the 

two-mode network is the triplet graph 𝐺 (𝑇, ⊥, ℒ). Here,  ℒ is a 

set of links between top nodes 𝑇, and a set of bottom nodes ⊥ 

[19].   

To illustrate an unweighted two-mode network projection, two 

separate sets of nodes, namely the primary set of nodes 1, 2, 3, 

4, 5, and 6, have a connection with nodes of the secondary set 

namely s, h, u, b, a, and n as shown in Fig. 2 (a). Here, node 1 

has links with nodes S, and H, while node 2 has connections 

with nodes S, B, and N. Similarly, two nodes B and H 

(secondary set nodes) are linked with node 6 as depicted in Fig. 

2 (a). To obtain the links between the nodes either primary 

nodes or secondary nodes, the two-mode network is projected 

onto the one-mode network by selecting either set of nodes. An 

example of the one-mode network projection by selecting a 

primary set of nodes is shown in Fig. 2 (b). The link is only 

established between the nodes if they have a common co-

occurrence in the other set. Node 1 shares links with nodes 2, 5 
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and 6, due to co-occurrence with them in the other set. Node 5 

is linked with nodes 1 and 4. Node 6 is linked with nodes 1, and 

2, as illustrated in Fig. 2 (b). From the perspective of network 

analysis, it is essential to convert the network into one-mode 

network by selecting the desired set of nodes. 

3.3 Connectivity Probability 

According to Figure. 1, a one-directional highway is 

considered, since the underpass 𝒚 is dispersed equally in [𝟎, 𝑳], 
hence, the connectivity probability will be analyzed under three 

situations: 

 Situation 1: the underpass 𝑦 is situated in [0, 𝑉𝑟]; 
 Situation 2: the underpass 𝑦 is situated in [𝑉𝑟 , 𝐿 − 𝑉𝑟]; 
 Situation 3: the underpass 𝑦 is situated in [𝐿 − 𝑉𝑟 , 𝐿]. 

Situation 1:  𝑦 𝜖 [0, 𝑉𝑟]  

In situation 1, the underpass 𝑦 is situated in [0, 𝑉𝑟], 
i.e., 𝑦 𝜖 [0, 𝑉𝑟]. If the vehicles are driving on segment [0, 𝑦], it 
is clear that entire vehicles are connected, because the 

transmission range 𝑉𝑟 is greater than the distance between any 

two vehicles. Now we have to consider whether the neighbor 

vehicles on both side of the underpass and the vehicles on the 

segment [𝑦, 𝐿] are connected. If the vehicles on 

segment [0, 𝑦] are not available, then it is only important that 

the connectivity of segment [𝑦, 𝐿] should be analyzed. 

The road [0, 𝐿] is divided into three sub-segments for ease of 

analysis: 

[0, 𝑦], [𝑦, 𝑦 + 𝑉𝑟] and [𝑦 + 𝑉𝑟 , 𝐿], which are denoted by 

𝑑1,𝑑2, and 𝑑3, respectively as shown in Figure. 2. 

 
Figure 2. The scenario of situation 1. 

 

The notations which are used in the analysis are given in 

Table 1. 

 

 

 

 

 

 

 

 

Table 1. Notations. 

 

Since the arrival of vehicles follows the Poisson process on the 

road segment [0, 𝑦], with parameter mean 𝛾1. Hence, the 

probability of having vehicles on segment 𝑑1could be 

computed as: 

 

Pr{𝐻𝑑1} = 1 −  
(𝛾1 .  𝑦)0

0!
. 𝑒−𝛾1 .  𝑦 = 1 − 𝑒−𝛾1 .  𝑦(1) 

and the probability without any vehicle on 𝑑1 is defined as  

 

Pr{𝐻𝑑1
̅̅ ̅̅ ̅} = 1 − Pr{𝐻𝑑1} = 𝑒−𝛾1 .  𝑦.             (2) 

 

also, the probabilities of the vehicles that are available on 𝑑2 

and 𝑑3 are defined as  

 

Pr{𝐻𝑑2} = 1 − 𝑒−𝛾2 .𝑉𝑟                       (3) 

and 

Pr{𝐻𝑑3} = 1 − 𝑒−𝛾2 .(𝐿−𝑦−𝑉𝑟),               (4) 

respectively.  

Therefore, the probabilities of no vehicles on 𝑑2 and 𝑑3 are 

defined as  

 

Pr{𝐻𝑑2
̅̅ ̅̅ ̅} = 𝑒−𝛾2.𝑉𝑟                        (5) 

and  

Pr{𝐻𝑑3
̅̅ ̅̅ ̅} = 𝑒−𝛾2.(𝐿−𝑦−𝑉𝑟 )                                 (6) 

respectively. 

We perform the analysis by dividing situation 1 into further two 

sub-situations: 

Situation 1.1: on segment 𝑑1 vehicles are driving.  

Situation 1.2: on segment 𝑑1 vehicles are not driving. 

 

Situation 1.1. 

In situation 1.1, the vehicles driving on the segment 𝑑1 are 

connected. Then the analysis of the connectivity probability 

will be conducted based on the conditions that on segment 𝑑2 

vehicles are driving and no vehicles are driving on 𝑑2, 

respectively.   

On segment 𝑑2 vehicles are driving. 

If on segment 𝑑2 vehicles are driving, they will be considered 

connected on segment 𝑑2. According to [9], if two vehicles are 

connected with each other, which are located on segment 𝑑1 

and 𝑑2, then 𝑑1 and 𝑑2 are connected. Therefore, we conduct 

the probability analysis of two vehicles which are located at 

𝑑1, 𝑑2 and are connected with each other respectively. 

Hence, the probability of two segments  𝑑1 and  𝑑2 that are 

interconnected with each other could be computed as [9] 

 

Symbol Meaning 

𝐻𝑥:  the automobiles are roving on 𝑥 road 

segment. 

𝐻𝑥
̅̅̅̅ :  the vehicles are not traveling on 𝑥 road 

segment. 

𝐶𝑥:  the 𝑥 road section is linked. 

𝐶𝑥
̅̅ ̅:  the 𝑥 road section is not connected. 

𝑃𝑟{𝑋}:  the probability of happening event X. 

Such as, 𝐻𝑑2 indicate that vehicles are driving on 

segment 𝑑2; i.e., segment [𝑦, 𝑦 + 𝑉𝑟]. 𝐶𝑑1
̅̅ ̅̅̅ indicates that the 

segment 𝑑1, i.e., [0, 𝑦], is not connected. 
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Pr{𝐶[0,𝑦+𝑉𝑟]|𝐻𝑑1, 𝐻𝑑2} = 1 − 𝑒−𝛾2.𝑉𝑟 .(1−𝑞1)   (7) 

 

where  

𝑞1 =
𝑒0.5.𝛾1.𝑦2/𝑉𝑟 −1

𝑒𝛾1.𝑦−1
                          (8) 

Further, in the situation when vehicles driving on segment 𝑑2 

and the probability that segment [𝑦, 𝐿] is connected could be 

computed as: 

Pr{𝐶[𝑦,𝐿]|𝐻𝑑2} = Pr{𝐶[𝑦,𝐿], 𝐻𝑑2}/ Pr{𝐻𝑑2} 

= Pr {𝐶[𝑦,𝐿]}. Pr{𝐻𝑑2|𝐶[𝑦,𝐿]} / Pr{𝐻𝑑2} 

= Pr {𝐶[𝑦,𝐿]}. (1 − Pr{𝐻𝑑2
̅̅ ̅̅ ̅|𝐶[𝑦,𝐿]})/ Pr{𝐻𝑑2},     (9) 

= Pr {𝐶[𝑦,𝐿]}. (1 − Pr{𝐶𝑑3})/ Pr{𝐻𝑑2} 

 

In the above equations Pr{𝐶[𝑦,𝐿]} represents the probability of 

the vehicles which are connected on the road segment [𝑦, 𝐿] 
and Pr {𝐶𝑑3} represents the probability of vehicles which are 

connected on segment 𝑑3. According to [13], for a highway, if 

arrival of vehicles follow a Poisson process, then the 

connectivity probability of the road segment is defined as 

Pr{λ, 𝑉𝑟 , 𝐿} = 𝑒−λ.𝐿 ∑
(−1)𝑗

𝑗!

⎣𝐿/𝑉𝑟⎦
𝑗=0 [λ(𝐿 − 𝑗𝑉𝑟)]𝑗−1 ⨯ [𝑗 +

λ(𝐿 − 𝑗𝑉𝑟)]𝑒λ.(𝐿−𝑗𝑉𝑟),             (10) 

where the road segment length is 𝐿. Hence, we get  

Pr {𝐶[𝑦,𝐿]} = 𝑃(𝛾2, 𝑉𝑟 , 𝐿 − 𝑦),          (11) 

 

Pr {𝐶𝑑3} = 𝑃(𝛾2, 𝑉𝑟 , 𝐿 − 𝑦 − 𝑉𝑟).                (12) 

 

Hence, the probability that the segment of road [0, 𝐿] is 

connected when vehicles are driving on 𝑑2 is defined as  

  

𝑝111 = Pr{ 𝐶[0,𝑦+𝑉𝑟]|𝐻𝑑1, 𝐻𝑑2} . Pr{𝐶[𝑦,𝐿]|𝐻𝑑2}.   (13) 

 

On segment 𝑑2 vehicles are not driving. 

If on segment 𝑑2 vehicles are not driving, the road 

segment [0, 𝑦 + 𝑉𝑟] will be not connected obviously. In that 

situation, the road [0, 𝐿] is connected occur only while vehicles 

are not driving on 𝑑3. Therefore, in the absence of vehicles on 

𝑑2 the probability of the road [0, 𝐿] is connected is defined as  

𝑝112 = Pr {𝐻𝑑3
̅̅ ̅̅ ̅}.                         (14) 

Thus, we could get the probability of the section [0, 𝐿] is 

connected in situation 1.1, i.e., 

𝑝11 = Pr{𝐻𝑑2} . 𝑝111 + Pr {𝐻𝑑2
̅̅ ̅̅ ̅}. 𝑝112.          (15) 

 

Situation 1.2. 

In situation 1.2, the vehicles are not driving on the segment 𝑑1, 

in this situation, we have to consider connectivity on 

segment [𝑦, 𝐿] only. To achieve this, the analysis of the 

connectivity probability will be conducted based on the 

conditions that on segment 𝑑2 vehicles are driving and no 

vehicles are driving on 𝑑2, respectively.   

𝑝121 = Pr{𝐶[𝑦,𝐿]|𝐻𝑑2},                      (16) 

Where Pr {𝐶[𝑦,𝐿]|𝐻𝑑2} is defined by (9). 

In the situation, when there are no vehicles driving on 

segment 𝑑2, the segment of road [0, 𝐿] is connected occurs is 

equals to road segment 𝑑3 is connected. Hence, the road’s [0, 𝐿] 

connectivity probability when there are no vehicles driving on 

𝑑2 is defined as  

 

𝑝122 = Pr{𝐶𝑑3 } = Pr{𝛾2 , 𝑉𝑟 , 𝐿 − 𝑦 − 𝑉𝑟},             (17) 

 

and in situation 1.2 the probability of segment [0, 𝐿] is 

connected could be defined as  

 

𝑝12 = Pr{𝐻𝑑2}. 𝑝121 + Pr {𝐻𝑑2
̅̅ ̅̅ ̅}. 𝑝122.                 (18) 

 

Based on all the situations above, the connectivity 

probability in situation 1 could be defined as  

 

𝑝1 = Pr{𝐻𝑑2} . 𝑝11 + Pr{𝐻𝑑1
̅̅ ̅̅ ̅}. 𝑝12.                  (19) 

 

 
Figure 3. Scenario of situation 2. 

 

Situation 2: 𝑦 𝜖 [𝑉𝑟 , 𝐿 − 𝑉𝑟] 

Same as situation 1, the road [0, 𝐿] is divided into further four 

sub-segments: [0, 𝑦 − 𝑉𝑟] [𝑦, −𝑉𝑟 , 𝑦], [𝑦, 𝑦 + 𝑉𝑟] and [𝑦 +
𝑉𝑟 , 𝐿], which are denoted by 𝑒1, 𝑒2, 𝑒3, and 𝑒4, respectively as 

shown in Figure. 3. Hence, the below given probabilities could 

be obtained easily: 

 

Pr{𝐻𝑒1 } = 1 − 𝑒−𝛾1 .(𝑦−𝑉𝑟),                          (20) 

Pr{𝐻𝑒2 } = 1 − 𝑒−𝛾1 .𝑉𝑟 ,                                 (21) 

Pr{𝐻𝑒3 } = 1 − 𝑒−𝛾2 .𝑉𝑟 ,                              (22) 

Pr{𝐻𝑒4 } = 1 − 𝑒−𝛾2 .(𝐿−𝑦−𝑉𝑟),                            (23) 

Pr{𝐻𝑒1
̅̅ ̅̅ ̅} = 𝑒−𝛾1 .(𝑦−𝑉𝑟),                              (24) 

Pr{𝐻𝑒2
̅̅ ̅̅ ̅} = 𝑒−𝛾1 .𝑉𝑟 ,                                (25) 

Pr{𝐻𝑒3
̅̅ ̅̅ ̅} = 𝑒−𝛾2 .𝑉𝑟 ,                                (26) 

Pr{𝐻𝑒4
̅̅ ̅̅ ̅} = 𝑒−𝛾2 .(𝐿−𝑦−𝑉𝑟).                             (27)  

        

on segment 𝑒2, if vehicles are driving, then transmission 

range 𝑉𝑟  between any two vehicles is greater than the distance 

amongst any two vehicles. Hence, on segment 𝑒2, all the 

vehicles are connected. Segment 𝑒3 carrying similar properties 

as 𝑒2. In this situation, the connectivity of  𝑒2  and 𝑒3 plays an 

essential part in the connectivity of the road [0, 𝐿]. By 

considering the observations above, situation 2 is divided into 

below given four sub-cases and the analysis is performed 

respectively: 

 

Situation 2.1: vehicles are not driving on both segments 

𝑒2 and 𝑒3 ; 
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Situation 2.2: vehicles are driving on 𝑒2, but vehicles are not 

driving on 𝑒3 ; 

Situation 2.3: vehicles are not driving on 𝑒2, but vehicles are 

driving on 𝑒3 ; 

Situation 2.4: on both segments, 𝑒2 and 𝑒3 vehicles are 

driving.   

   

Situation 2.1. 

In situation 2.1, the vehicles are not driving on both of the 

segments 𝑒2 and 𝑒3, in this situation, both of the segments 𝑒2 

and 𝑒3 are not connected. If the vehicles are not driving on 

𝑒4 and 𝑒1  or if the vehicles are not driving on 𝑒1 and 𝑒4 is 

connected. Therefore, the road’s [0, 𝐿] connectivity probability 

in situation 2.1 is defined as 

 

𝑝21 = Pr{𝐶𝑒1} . Pr{𝐻𝑒4
̅̅ ̅̅ ̅} + Pr{𝐶𝑒4}. Pr{𝐻𝑒1

̅̅ ̅̅ ̅},   (28) 

 

Where  

Pr{𝐶𝑒1} = 𝑃{ λ1, 𝑉𝑟 , 𝑦 − 𝑉𝑟},                                  (29) 

 

Pr{𝐶𝑒4} = 𝑃{ λ2, 𝑉𝑟 , 𝐿 − 𝑦 − 𝑉𝑟}.                          (30) 

 

Situation 2.2. 

In situation 2.2, the vehicles are driving on the segment 𝑒2, but 

vehicles are not driving on 𝑒3. In this situation, 𝑒2 is connected 

but 𝑒3 is not connected. In the meantime, both of the 

segments 𝑒2 and 𝑒3 are not connected with each other. When 

vehicles are not driving on 𝑒4 and segment [0, 𝑦] is connected 

based on the condition that vehicles are driving on 𝑒2, the 

segment of road [0, 𝐿] is connected. Hence, the probability of 

road [0, 𝐿] is connected in situation 2.2 could be defined as    

 

𝑝22 = Pr{𝐶[0,𝑦]|𝐻𝑒2} . Pr{𝐻𝑒4
̅̅ ̅̅ ̅},                    (31) 

where  

 

Pr{𝐶[0,𝑦]|𝐻𝑒2} = Pr{𝐶[0,𝑦]} . (1 − Pr{𝐶𝑒1})/Pr{𝐻𝑒2} 

 

𝑃( 𝛾1, 𝑉𝑟 , 𝑦). [1 − 𝑝(𝛾1, 𝑉𝑟 , 𝑦 − 𝑉𝑟)]/Pr{𝐻𝑒2    (32) 

 

Situation 2.3. 

Same as situation 2.2, the probability of road [0, 𝐿] is connected 

in situation 2.3 could be defined as 

𝑝23 = Pr{𝐶[𝑦,𝐿]|𝐻𝑒3} . Pr{𝐻𝑒1
̅̅ ̅̅ ̅},                       (33) 

where  

 

Pr{𝐶[𝑦,𝐿]|𝐻𝑒3} = Pr{𝐶[𝑦,𝐿]} . (1 − Pr{𝐶𝑒4})/Pr{𝐻𝑒3} 

= 𝑃( 𝛾2, 𝑉𝑟 , 𝐿 − 𝑦). [1 − 𝑝(𝛾2, 𝑉𝑟 , 𝐿 − 𝑦 − 𝑉𝑟)]/Pr{𝐻𝑒3} 
                                                                        (34) 

 

Situation 2.4. 

In situation 2.4, the vehicles are driving on both of the 

segments 𝑒2 and 𝑒3, in this situation, the probability analysis 

of 𝑒2 and 𝑒3 is conducted, which shows they are connected to 

each other. According to [9], it is defined as 

 

Pr{𝐶[𝑦−𝑉𝑟,𝑦+𝑉𝑟]|𝐻𝑒2, 𝐻𝑒3 } = 1 − 𝑒−𝛾2 .𝑣𝑟.(1−𝑞2)  (35) 

where 

𝑞2 =
𝑒0.5.𝛾1.𝑣𝑟−1

𝑒𝛾1.𝑣𝑟−1
.                       (36) 

 

 

Further, the probability of the segment [0, 𝑦] is connected 

based on the situation that vehicles are driving on 𝑒2 could be 

computed by Eq. (32). The probability of the segment [𝑦, 𝐿] is 

connected based on the situation that vehicles are driving 

on 𝑒3 could be computed by Eq. (34). Hence, the probability of 

road [0, 𝐿] is connected in situation 2.4 could be defined as 

𝑝24 = Pr{𝐶[𝑦−𝑉𝑟,𝑦+𝑉𝑟]|𝐻𝑒2, 𝐻𝑒3 }.                 (37) 

 

Based on all the situations above, the probability of 

connectivity in situation 2 could be computed as  

 

𝑝2 = Pr{𝐻𝑒2
̅̅ ̅̅ ̅}. Pr{𝐻𝑒3

̅̅ ̅̅ ̅}. 𝑝21 + Pr{𝐻𝑒2}. Pr{𝐻𝑒3
̅̅ ̅̅ ̅}. 𝑝22 +

Pr{𝐻𝑒2
̅̅ ̅̅ ̅}. Pr{𝐻𝑒3}. 𝑝23 + Pr{𝐻𝑒2}. Pr{𝐻𝑒3}. 𝑝24      (38) 

 
Figure 4. The scenario of situation 3. 

 

 

Situation 3: 𝑦 𝜖 [𝐿 − 𝑉𝑟 , 𝐿] 

Same as situation 1, the road [0, 𝐿] is divided into three sub-

segments: [0, 𝑦 − 𝑉𝑟] [𝑦, −𝑉𝑟 , 𝑦], and [𝑦, 𝐿], which are denoted 

by 𝑓1, 𝑓2, and 𝑓3  respectively as shown in Figure. 4. Hence, the 

below given probabilities could be obtained easily: 

 

Pr{𝐻𝑓1 } = 1 − 𝑒−𝛾1 .(𝑦−𝑉𝑟),                           (39) 

Pr{𝐻𝑓2 } = 1 − 𝑒−𝛾1 .𝑉𝑟 ,                   (40)                                              

Pr{𝐻𝑓3 } = 1 − 𝑒−𝛾2 .(𝐿−𝑦),                     (41) 

Pr{𝐻𝑓1
̅̅ ̅̅̅} = 𝑒−𝛾1 .(𝑦−𝑉𝑟),                      (42) 

Pr{𝐻𝑓2
̅̅ ̅̅̅} = 𝑒−𝛾1 .𝑉𝑟 ,               (43) 

Pr{𝐻𝑓3
̅̅ ̅̅̅} = 𝑒−𝛾2 .(𝐿−𝑦).                                       (44) 

 

We perform further analysis, by dividing situation 3 into two 

sub-situations: 

 

Situation 3.1: on segment 𝑓3 vehicles are driving;  

Situation 3.2: on segment 𝑓3 vehicles are not driving. 

 

Situation 3.1. 

In situation 3.1, the vehicles are driving on the segment 𝑓3 are 

connected. Then the analysis of the connectivity probability 

will be conducted based on the conditions that on segment 𝑓2 

vehicles are driving and no vehicles are driving on 𝑓2, 

respectively.   
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On segment 𝑓2 vehicles are driving. 

If on segment 𝑓2 vehicles are driving, they will be considered 

connected on segment 𝑓2. In this situation, if segment 𝑓2 

and 𝑓3 are connected with each other, the segment of 

road[ 𝑦 − 𝑉𝑟 , 𝐿] is connected. Hence, the probability of road 

segment [𝑦 − 𝑉𝑟 , 𝐿] is connected could be computed as [9] 

 

Pr{𝐶[𝑦−𝑉𝑟,𝐿]|𝐻𝑓2, 𝐻𝑓3} = 1 − 𝑒−𝛾1.𝑉𝑟 .(1−𝑞3),        (45) 

where 

𝑞3 =
𝑒0.5.𝛾2.(𝐿−𝑦)2/𝑣𝑟−1

𝑒𝛾2.(𝐿−𝑦)−1
.                              (46) 

Further, the probability of the segment [0, 𝑦] is connected 

based on the situation that vehicles are driving on 𝑓2 could be 

computed as  

 

Pr{𝐶[0,𝑦]|𝐻𝑓2} = 𝑃(𝛾1, 𝑉𝑟 , 𝑦). [1 − 𝑝(𝛾1, 𝑉𝑟 , 𝑦 − 𝑉𝑟)]/

Pr{𝐻𝑓2}.                               (47) 

 

Hence, the road’s [0, 𝐿] connectivity probability when there are 

vehicles driving on 𝑓2 is defined as 

 

𝑝311 = Pr{𝐶[𝑦−𝑉𝑟,𝐿]|𝐻𝑓2, 𝐻𝑓3}. Pr{𝐶[0,𝑦]|𝐻𝑓2}.  (48) 

 

On segment 𝑓2 vehicles are not driving. 

If on segment 𝑓2 vehicles are not driving, the road 

segment [𝑦 − 𝑉𝑟,𝐿] will not be connected obviously. In that 

situation, the road [0, 𝐿] is connected occur only while vehicles 

are not driving on 𝑓1. Therefore, in the absence of vehicles on 

𝑓2 the probability of the road [0, 𝐿] is connected is defined as  

𝑝312 = Pr {𝐻𝑓1
̅̅ ̅̅̅}.                       (49) 

 

Thus, we could get the probability of the segment [0, 𝐿] is 

connected in situation 3.1, i.e., 

 

𝑝31 = Pr{𝐻𝑓2} . 𝑝311 + Pr {𝐻𝑓2
̅̅ ̅̅̅}. 𝑝312.     (50) 

 

Situation 3.2. 

In situation 3.2, the vehicles are not driving on the segment 𝑓3, 

in this situation, we have to consider connectivity on 

segment [0, 𝑦] only. To achieve this, the analysis of the 

connectivity probability will be conducted based on the 

conditions that on segment 𝑓2 vehicles are driving and no 

vehicles are driving on 𝑓2, respectively.   

Hence, the road’s [0, 𝐿] connectivity probability when there are 

vehicles driving on 𝑓2, is defined as  

 

𝑝321 = Pr{𝐶[0,𝑦]|𝐻𝑓2},                     (51) 

where  

 

Pr{𝐶[0,𝑦]|𝐻𝑓2} is defined by Eq. (47).  

 

In the situation, when there are no vehicles driving on 

segment 𝑓2, the segment of road [0, 𝐿] is connected occurs is 

equals to road segment 𝑓1 is connected. Hence, the road’s [0, 𝐿] 
connectivity probability when there are no vehicles driving on 

𝑓2 is defined as  

 

𝑝322 = Pr{𝐶𝑓1 } = 𝑃(𝛾1, 𝑉𝑟 , 𝐿 − 𝑉𝑟),               (52) 

 

and in situation 3.2 the probability of segment [0, 𝐿] is 

connected could be computed as  

 

𝑝32 = Pr{𝐻𝑓2}. 𝑝321 + Pr {𝐻𝑓2
̅̅ ̅̅̅}. 𝑝322.           (53) 

 

Based on all the situations above, the probability of 

connectivity in situation 3 could be computed as  

 

𝑝3 = Pr{𝐻𝑓3} . 𝑝31 + Pr{𝐻𝑓3
̅̅ ̅̅̅}. 𝑝32.           (54) 

 

Hence, the probability of the road segment [0, 𝐿] is connected 

based on the situation that there is one underpass equally 

dispersed in [0, 𝐿] could be computed as  

𝑝 =
1

𝐿
. (∫ 𝑝1𝐿𝑦

𝑉𝑟

0
+ ∫ 𝑝2𝐿𝑦 +

𝐿−𝑉𝑟

𝑉𝑟
∫ 𝑝3𝐿𝑦

𝐿

𝐿−𝑉𝑟
). (55)  

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, the effectiveness and exactness of the proposed 

mathematical model is proven by simulations. In addition, the 

influence of different parameters on the performance of 

connectivity is discussed and analyzed, including the vehicles 

arrival rate λ1 and λ2, the speed 𝑣 and the probability 𝛼 that the 

vehicles driving on road [0, 𝑦] keep on driving towards road 

segment [𝑦, 𝐿]. The analytical results were achieved by the 

derived mathematical model using MATLAB. We assumed in 

the simulations that the transmission range of every vehicle is 

𝑉𝑟 = 300 m, and the road length is 10 Km. All the simulations 

are based on 105 average trials. 

 
Figure.5. Connectivity probability in contrast with 𝛌𝟏 and 𝛌𝟐. 

The impacts of λ1 and λ2 in the considered situation is shown 

in Figure. 5. In which we set 𝑣 = 31 m/s, 𝑉𝑟 = 300 m, 𝑎 =

0.5, and 𝐿 = 10000 m. It could be seen that results obtained by 

simulations are close to the mathematical results, which shows 

the mathematical model is correct. It is observed in the given 

situation, with the increase in λ1 and λ2, the road’s connectivity 

probability increases. Which shows that a high arrival rate 

could increase the entire network connectivity probability. 
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Figure.6. Connectivity probability in contrast with 𝛌𝟏 and 𝒂. 

The impacts of λ1 and 𝑎 in the considered situation is shown in 

Figure. 6. In which we set 𝑣 = 31 m/s,  𝑉𝑟 = 300 m, λ2 = 0.5 

veh/s, and 𝐿 = 10000 m. It is observed that in our situation 

with the increase in 𝑎 the road’s connectivity probability 

increases. The reason is that, with the increase in 𝑎, many 

vehicles drive towards the underpass and leave, which in result 

increases 𝛾2 also increases the road’s connectivity probability. 

Figure.7. Connectivity probability in contrast with 𝑽𝒓 and 𝑳. 

The impacts of  𝑉𝑟  and 𝐿 in the considered situation, is shown 

in Figure. 7. In which we set 𝑣 = 31 m/s,  𝑎 = 0.5 and λ1 =

λ2 = 0.5 veh/s. It is observed that in both of the scenarios with 

the increase in 𝐿 the roads connectivity probability decreases. 

The reason is that, when the arrival rate of vehicles is not 

changing, a large value of 𝐿 causes few vehicles in a unit length 

of the road also a large distance between two consecutive 

vehicles. Which results in a decrease of connectivity 

probability.   

 
Figure. 8. Connectivity probability in contrast with 𝒗, 𝒂 and 𝛌𝟐. 

The impacts of 𝑣, 𝑎 and λ2 in the considered situation, is shown 

in Figure. 8. In which we set  𝑉𝑟 = 300 m, 𝐿 = 10000 m, and 

λ1 = 0.3 veh/s.  

In the first situation where λ2 = 0, 𝑎 = 1, that shows there are 

no vehicles entering or leaving the underpass. That equals to 

the situation that no underpass, exists on the road. In this 

situation, the arrival rate of the vehicles remains 0.3 veh/s on 

the road. In the second situation where λ2 = 0.15 and 𝑎 = 0.5, 

that shows with probability 0.5 on segment [0, 𝐿] the vehicles 

drive towards the underpass. In this situation the arrival rate of 

vehicles on segment [𝑦, 𝐿] remains 0.3 veh/s that is equivalent 

to λ1. Therefore, in the two situations vehicles rate of arrival on 

the road is equal. As shown in Figure. 8, the roads connectivity 

probability as compared to the second situation, is higher in the 

first situation. It is now clear that the presence of the underpass 

has an influence on the road’s connectivity probability. In the 

third situation, where λ2 = 0.3 and 𝑎 = 0.5, it is clear that the 

connectivity probability as compare to second situation is 

higher. The reason is that in this situation 𝑎 is equivalent to that 

in the second situation but λ2 is higher. As a result, the arrival 

rate of vehicles on segment [𝑦, 𝐿] is higher than the second 

situation, which results in a higher connectivity probability. In 

the fourth situation, where λ2 = 0.15, and 𝑎 = 0.2, as 

compared to the second situation the connectivity probability is 

smaller. The reason is that in this situation 𝑎 is smaller to that 

in the second situation but λ2 is equivalent. As a result, the 

vehicles arrival rate on segment [𝑦, 𝐿] is lesser as compared to 

the second situation, which results in a lesser probability of 

connectivity. 

V. CONCLUSION 

In this paper, with one underpass, the steady-state connectivity 

probability of a one-directional highway road scenario is 

considered. To analyze the vehicles connectivity probability on 

the road a mathematical model was developed, in which 

various situations according to the location distribution of the 
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underpass are considered. The various parameters are 

considered that could influence the road’s connectivity 

probability, vehicle’s arrival rate, traveling speed, road length, 

and the probability that the vehicle’s drive towards the 

underpass. The simulation results confirm the efficiency of the 

mathematical model also ensures that the method could be used 

to analyze the influences of different parameters on the 

probability of connectivity. The more practical scenario will be 

considered as future work. 
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