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Abstract: The assimilation of deep learning and Adaptive Optics 

Optical Coherence Tomography (AO-OCT) has promoted the area 

of retinal imaging to a new direction with ultra-high-resolution, 

intelligent diagnostics. AO-OCT comprises Optical Coherence 

Tomography (OCT) and Adaptive Optics (AO), which 

synergistically allows high-resolution, three-dimensional imaging of 

retinal structures. This amalgamation can provide a detailed 

cellular-level image of the retina that enables very early detection 

and monitoring microstructural abnormalities. Deep learning 

approaches, specifically convolutional neural networks and vision 

transformers (ViTs)) has further unlocked the potential of AO-OCT 

systems. They can execute real-time motion artifact correction, 

improve the image quality in suboptimal imaging conditions and 

automate segmentation of complex retinal layers. Deep learning 

reduces the burden of manual interpretation and compensates for 

patient movement, which improves both the accuracy as well as 

efficiency of AO-OCT based diagnostics. Clinically, these 

advancements are critical for the early diagnosis and intervention of 

a number of retinal disorders like age– related macular degeneration 

(AMD), diabetic retinopathy (DR) and glaucoma. The ability to 

visualize and interrogate subtle cellular changes can provide 

important insights into the progression of disease before symptoms 

become clinically apparent; this has profound implications for 

prevention, diagnosis and treatment. This narrative review discusses 

how deep learning has recently gained ground in AO-OCT and 

offers an overview of its system architecture, diagnostic outlook, 

current challenges, as well as possible directions for AI-driven 

ophthalmic imaging. 
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INTRODUCTION 

The human retina, a laminated structure through which light is 
transformed into a neural signal, is a vulnerable target to numerous 
degenerative, vascular, and inflammatory diseases. Early 
detection and accurate monitoring of retinal pathologies are 
essential for early and vision-sparing treatment. Of modern 
imaging modalities, Optical Coherence Tomography (OCT) is a 
non-invasive, high-resolution imaging technique that has 
transformed the diagnosis and care of patients with eye disease by 
allowing clinicians to view the retina in cross-section at near 
histological resolution. However, inhomogeneous optical media of 
the human eye produce optical errors, imaging artifacts, and 
marginal resolution when used as in vivo retinal imaging in the 
human eye, especially for eyes with advanced eye disease or in 
dissimilar patients with unstable fixation [1]. 
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In order to address these limitations, Adaptive Optics (AO), a 
method initially developed for astronomical imaging, has been 
adapted to combine with OCT, namely Adaptive Optics Optical 
Coherence Tomography (AO-OCT). This integration improves 
lateral resolution by real-time correction of ocular aberrations, 
enabling cellular-resolution retinal imaging to elucidate 
photoreceptor integrity, ganglion cell morphology, and early 
microvascular changes[2]. However, AO-OCT is technically 
complicated and has not been well accepted in the clinical setting 
because of its technical complexity, slowness of image 
acquisition, and technical challenges in interpretation. 

In modern era, adaptive Optics Optical Coherence Tomography 
(AO OCT) has revolutionized retinal imaging by combining 
OCT’s high-resolution depth scanning with Adaptive Optics’ 
ability to correct ocular aberrations in real time, enabling cellular 
level visualization of retinal structures . Recently, machine 
learning particularly deep learning has become pivotal in 
advancing AO OCT’s diagnostic and operational capabilities. 

In a groundbreaking study published in early 2025, ViT 2SPN, a 
Vision Transformer based Dual Stream Self Supervised 
Pretraining Network, demonstrated exceptional performance in 
classifying retinal OCT images. The model achieved a mean AUC 
of 0.93, outperforming existing self-supervised methods through a 
structured pretraining and fine tuning pipeline arXiv.[3] 

Complementing this, a broader review on the role of AI in retinal 
imaging underscores how AI, together with OCT/OCT A and 
Adaptive Optics, enhances early disease detection including 
microvascular and neurodegenerative markers. Yet, inconsistent 
imaging protocols and limited external validation continue to 
hinder widespread clinical adoption arXiv.[4] 

Hybrid architectures combining CNNs and Vision Transformers 
have also shown promise. For instance, Conv ViT fuses 
convolutional and transformer-based feature extractors for 
improved retinal disease detection, while HCTNet another hybrid 
model has proven effective in OCT image classification tasks[5] 

In the past few years, deep learning (DL) has significantly 
transformed biomedical imaging by providing significant progress 
in automated feature extraction, noise reduction, enhanced image 
resolution, and real-time decisions.When combined with AO-
OCT systems, deep learning algorithms, especially convolutional 
neural networks (CNNs), generative adversarial networks 
(GANs), and vision transformers (ViTs), have shown great 
promise for improving image quality, motion artifact removal, 
and speeding up data acquisition and processing[6;7]. For 
example, Xiang et al.(2024) designed a deep-learning method for 
the real-time correction of aberrations and segmentation of layers 
in AO-OCT images; the approach reduces the post-processing 
time and the need for human intervention. In addition, deep 
learning-accelerated denoising models have demonstrated 
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potential for the high signal-to-noise ratios in LL(low-light ) or RS 
(rapid-scan ) OCT, to help clinicians capture high-quality 
retina[8]. 

Furthermore, the merger withthe deep learning methods, AO-OCT 
allows not only technical image improvement, but also clinical 
diagnosis assistance, such as early detection of subtle pathological 
biomarkers, longitudinal disease monitoring, and treatment 
response prediction in diseases, including age-related macular 
degeneration (AMD), diabetic retinopathy (DR), and glaucoma. 
According to Li et al. (2023) [9], a transformer-encoded network-
level learning with AO-OCT imaging data outperformed retinal 
specialists in diagnosing early MD (Macular Degeneration) 
phenotypes, showing the emerging clinical value of these systems. 

Despite these developments, there are still many barriers. These 
are the generalizations of deep learning models to diverse 
populations and imaging modalities, the interpretability of 
algorithmic decision-making in clinical practice, and reliance on 
large annotated datasets to train robust models. Real-time 
implementation of DL-AO-OCT systems in clinics is also limited 
and requires an optimized hardware-software integration, 
regulatory approvals, and validation in a longitudinal, multicenter 
trial. 

This narrative review aims to provide an in-depth overview of 
recent progress of deep learning-empowered AO-OCT, including 
technological development, clinical translation, shortcomings, and 
future development directions. It demonstrates the convergence 
of deep learning and high-resolution ophthalmic imaging as a 
game changer in retinal diagnostics. It is a significant step towards 
precision, automation, and patient-centricity in ophthalmology. 
Figure 1 illustrates the multi-dimensional usage of Deep Learning 
based  AO-OCT. 

 

Figure 1: Multi-dimensional usage of Deep Learning based  
AO-OCT 

1. Fundamentals of Optical Coherence Tomography 
(OCT) in Retinal Imaging 

OCT, a  imaging technique that is  noninvasive and employs low 
coherence interferometry to generate cross-sectional images of 
the retina at the micrometer scale. It functions by detecting the 
time delay of echo and intensity of backscattered light, enabling 
to visualize retinal layers and microstructures with great details. 
The axial resolution is mainly determined by the light source 
bandwidth, and the lateral resolution is dependent upon the optical 
focus, and in present systems, it is between 3 and 5 μm are 
available [10]. From the clinical standpoint, the OCT has a broad 
application as diagnostic and monitoring tool for retinal diseases, 
such as, age-related macular degeneration (AMD), diabetic 
macular edema (DME), and glaucoma. On the other hand, 
limitations, motion artifacts, image quality degradation in media 

opacities, and shallow depth of field remain the major challenges 
[11]. 

2. Role of Adaptive Optics in OCT (AO-OCT) 

AO can be used to improve OCT by compensating for ocular 
aberrations in vivo, which significantly improves lateral resolution 
and image contrast. Systematic use of AO in combination with 
OCT allows for cellular-level imaging of the photoreceptor layer, 
retinal pigment epithelium and microvasculature that is crucial for 
identifying early pathological changes [2]. Aberration control also 
makes it possible to image retinal structures hidden by optical 
imperfections. Despite these benefits, implementing AO-OCT 
systems presents challenges in system design that includes added 
complexity, higher costs, susceptibility to eye motion and the 
requirement for meticulous alignment [12]. Overcoming these 
challenges is essential to translate AO-OCT from the laboratory to 
the clinic. 

3. Integration of Deep Learning into AO-OCT Systems 

The incorporation of deep learning into AO-OCT systems has 
permitted real time image improvement through intelligent 
aberration correction, motion artifact elimination, and automated 
analysis. Although deep neural nets, especially convolutional and 
transformer-based models are now part of the imaging pipeline to 
improve image reconstruction and enable high-speed data 
handling [7]. These achieve real-time correction of aberrations and 
motion and minimisation of dependence on complex optical 
hardware. In addition, deep learning based automated 
segmentation algorithms are able to precisely define retinal layers 
and microstructures for early diagnosis and longitudinal disease 
monitoring similarly [13]. This unification of AI with AO-OCT 
has brought the modality from the laboratory to the clinic. 

4. Clinical Applications of DL-Augmented AO-OCT 

Deep learning-supported AO-OCT systems have great potential in 
the early diagnosis of retinal diseases, for instance, age-related 
macular degeneration (AMD), diabetic retinopathy (DR), and 
glaucoma, due to the enhanced resolution and accuracy with the 
image segmentation [14]. These methods make it possible to 
follow subtle microstructural changes which may appear far 
before the clinical and can permit early intervention. In addition, 
DL-AO-OCT can provide serial surveillance of the progression of 
diseases and therapeutic efficiency, which will be beneficial for 
predicting patient outcome [15]. Clinical stories have shown that 
deep learning methods can continue to reach or even surpass the 
diagnostic skills of expert ophthalmologists especially in AMD 
and DR diagnosis, thus, evidently proving the clinical 
effectiveness of such systems [16]. 

 

5. Benchmark Datasets and Model Training 

High-quality benchmark datasets are very important for the 
development of deep learning models for OCT and AO-OCT 
systems. Publicly available datasets, such as the Duke OCT dataset 
and the Retinal OCT dataset, contain labeled images for 
segmentation and classification model training [17]. It is difficult 
to annotate OCT images for deep learning, as an ophthalmologist 
must manually delineate retinal layers and pathological 
characteristics, and there are less cumbersome methods for 
annotation, such as semi-automatic annotation tools to alleviate 
the workload [18]. Augmentation techniques such as rotation, and 
flipping, and intensity normalization are used to add variability in 
the dataset and improve model’s generalization. And the transfer 
learning was a trend where pre-trained models on large scale 
datasets are fine-tuned on smaller datasets specific to domain, 
which makes this domain-specific tasks can be well performed 
with small amount of data [19]. This extends the use of deep 
learning models to cross-domain applications where models can 
be applied for comprehensive retinal disease diagnosis by 
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combining images from other imaging modalities such as fundus 
photography or angiography to OCT images. 

6. Evaluation Metrics and Validation Approaches 

For deep learning based AO-OCT applications, evaluation of the 
model performance necessitates reliable and standardized metrics. 
The popularly used quality-assessment indices are Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM), 
which evaluate the quality of reconstructed images by comparing 
with ground truth images [15]. For segmentation, metrics such as 
Dice coefficient and Intersection over Union (IoU) are important 
to assess the quality of retinal layer delineation, whereas Area 
Under the Curve (AUC), is frequently used for the classification 
especially for disease detection [14]. Validation of these models 
is commonly performed by comparing predictions with expert 
annotations for their clinical relevance and accuracy. Moreover, 
runtime metrics, e.g. inference time and processing speed, are 
important for the evaluation of these existing and proposed models 
to achieve the practical implementation of these models in clinical 
practice [20]. 

7. Hardware and Software Optimization for Real-Time 
Imaging 

In order to realize real-time processing in deep learning- 
integrated AO-OCT systems, GPU acceleration is crucial for 
accelerating image reconstruction and model inference [21]. Edge 
computing is gaining prominence because the real-time processing 
of data at the point-of-care is possible, reducing dependence on 
distant cloud servers and minimizing lags [22]. These FPGA-
based systems promise to increase efficiency even further, by 
providing bespoke hardware, which supports real-time OCT-
imaging tasks with minimum delay [23]. Meanwhile, real-time 
data streaming and visualization technology is necessary for the 
real-time transmission of OCT data to enable prompt decision 
making and diagnosis [24]. 

8. Challenges and Limitations 

Even with the progress made in AO-OCT systems integrated with 
deep learning, several challenges remain to be resolved between 
benchtop and clinical implementation. A major issue is the 
generalizability of the trained models; because deep learning 
models are fine-tuned to the characteristics of the training dataset, 
the performance of these models can suffer when used in larger 
and more heterogeneous patient populations and this effect can be 
pronounced [25]. Privacy Privacy is a key challenge, such as how 
patients data are stored and shared, and complying with privacy 
regulations like the General Data Protection Regulation (GDPR) 
in the EU, and Health Insurance Portability and Accountability 
Act (HIPAA) in the U.S. [26]. In addition, due to the absence of 
standard protocols of devices, the AI interoperability is not perfect, 
since differences among the model of OCT machine, imaging 
mode and imaging quality can lead to the instability and 
unreliability of the DL algorithms [27]. 

9. Future Directions and Emerging Trends 

The next generation of AO-OCT systems are in multimodal 
imaging integration, combining OCT with fundus photography 
and OCT-angiography for a more complete understanding of 
retinal state. This provides a means for not only imaging the retina 
structure but also vasculature under the same platform, which is 
particularly important for more accurate diagnosis, disease 
progression monitoring, and treatment of diseases such as diabetic 
retinopathy and macular degeneration [28]. An emerging new 
direction is understandable AI in clinical decision making, aiming 
to make AI-based models transparent and interpretable, thus to 
establish the trust between physicians and patients, because in this 
way we can understand how physicians make diagnostic decision 
[29]. Moreover, personalized retinal imaging with AI-therapeutics 
enables precise treatment strategies that can identify interventions 
specifically tailored to patients who are selected based on detailed 

examination of their retinal profiles, niching the therapies for 
greater precision and better treatment effectiveness [30]. These 
developments will lend themselves to optimizing clinical 
workflow and they will drive precision medicine forward in the 
field of ophthalmology. 

CONCLUSION 

Coupling adaptive optics with optical coherence tomography 
(AO-OCT) has resulted in dramatic advancements in retinal 
imaging by improving the resolution, contrast and penetration of 
conventional OCT systems. Deep learning algorithms and AI 
technology have taken AO-OCT to the level of automatic, real-
time spherical and higher-order aberration correction, image 
motion compensation, and automated retinal layer segmentations, 
to improve the precision and efficiency of diagnostics. These 
technological innovations offer tremendous potential for clinical 
translation in terms of earlier disease diagnosis and more 
individually-tailored treatment in retinal diseases. Although the 
generalizability of models, data privacy and the limited hardware 
may pose challenges, clinical translation of AO-OCT systems is 
attainable. The combination of multimodal imaging, interpretative 
AI, and personalized retinal therapeutics will propel the field 
toward precision ophthalmology, enhancing patient outcomes in 
the near future. 
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