
Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1

Enhancing Medical Information Retrieval using RAG
with Hybrid Vector Search and Query Expansion

Irtiza Hussain 1

__

Abstract- The rise of large language models (LLMs) has
improved people’s access to medical information. These
LLMs, however, lack the domain-specific knowledge
essential to answering more specialized questions. To plug
this knowledge gap, this paper explores the use of retrieval-
augmented generation. A comparative analysis of four
different retrieval strategies — dense vector search, dense
vector search with query expansion, hybrid vector search,
and hybrid vector search with query expansion — was
carried out and a combination of hybrid vector search
with query expansion was found to be the most effective
retrieval strategy. This framework will help efficient and
cost effective information retrieval for chatbot used in the
medical sector. At the same time, because of its generic
nature, this proposed combination can be used for
applications in other fields.

keywords: Retrieval-Augmented Generation, Hybrid
Vector Search, Query Expansion, LLMs, Dense Vectors,
Sparse Vectors

INTRODUCTION
Efficient retrieval of information about different medical
conditions and individual patient’s history has become
important for personalized treatment plans and effective
recovery of patients. The rise of large language models
(LLMs) has increased the adoption of generative AI to achieve
these goals, especially by building chat bots [1]. These chat
bots, with accurate information, can also help patients in
countries where the doctor-to-patient ratio is quite low in
accessing reliable and correct information about different
diseases [2].

While the LLMs used in such chat bots have the capability to
answer complex queries, and perform tasks that are related to
information already stored in their parameters, they are not
capable of answering questions about domain-specific topics
like medical records of an individual [3].

In order to use these models for such specialized tasks, it is
important to provide them with the necessary context through
the prompt, a technique called in-context learning [4]. This is
where strategies like Retrieval-Augmented Generation (RAG)
come into play [5]. Before any query is passed to the LLM, it

is converted to vectors, also called dense vectors, by an
embedding model and this vector is passed to a vector
database which already carries a list of documents that could
be relevant to the user’s queries. The necessary contextual
information is then retrieved from this database by comparing
the query vector with vectors associated with each document
of the corpus and ranking it in the order of similarity. This
similarity score is generated through metrics like cosine
similarity, dot product similarity and Euclidean distance
similarity. The retrieved context is then passed to the LLM as
part of its prompt using which it would provide an answer to
the query.

However, for retrieval from a large corpus of documents,
plain dense vector search is often not enough and we need to
pair it with more advanced techniques. One such technique is
hybrid vector search where, in addition to dense vectors,
sparse vectors representing the keywords associated with the
corpus are also stored and used for retrieval [6]. The similarity
is computed individually for both dense and sparse vectors
and then the retrieved documents lists are merged together by
assigning weights to both retrieval systems or through
advanced techniques like reciprocal rank fusion (RFF) [7] .
Another technique that is used to optimize retrieval is query
expansion [8]. A model like BERT, or Word2Vec is trained on
the documents and is then used to generate keywords based
on the user’s query. Queries are also rephrased, as part of this
technique, to attach more context and to ensure the embedding
model orients the vector in the direction which conveys the
highest context.

However, training and hosting a model for query expansion is
costly and time consuming. This is where LLMs, with their
APIs, provide relief by doing all that we have to do for query
expansion without the need to train or host a model, thus
eliminating the need for computational capacity and the
associated costs. These LLMs can also be used for guiding the
retrieval process because, as they are trained on vast amounts
of data, they can be used for deciding whether a particular
query needs the retrieval process or can be answered without
any context. Moreover, an LLM can also generate SQL
queries thus, enabling direct data retrieval from databases [9].
In this paper, both hybrid vector search and query expansion
using OpenAI’s GPT-4o mini were combined to maximize the
efficiency of the retrieval process over two medical

21

NED University of Engineering and
Technolog, Karachi
Country : Pakistan
Email:: irtizahussain221@gmail.com

LITERATURE REVIEW
Large language models (LLMs) are getting a lot of attention
recently for performing tasks related to report generation,
student counselling, content writing, marketing, HR divisions,
and code generation [10]. This trend has also resulted in more
applications focusing on the uses of natural language
processing in the medical sector [1], [2], [11], [12]. While
these models can perform some of these tasks very efficiently,
they need industry-specific, individual-specific or company-
specific training to perform specialized tasks related to these
areas.

One way to provide this information is to fine-tune these
LLMs as this adjusts the weights of the models as per the
additional data and as a result, the model can answer the
queries in a more context-aware manner [9].

However, this approach also presents a few problems of its
own. For instance, many people might not be completely
comfortable with their data being used to train an LLM which
is essentially used by everyone [13]. This problem may be
solved by deciding to train a completely new model or by
using secure fine tuning strategies [13].

Fine-tuning can also increase training and deployment costs
but this problem can be mitigated by using solutions like low-
rank adaptation (LoRA) where instead of training the whole
model, we just freeze the weights of most of the layers and
add low-rank matrices carrying fresh weights to be used in a
few layers generating better results [14].

The nature of data also has an impact on the success or failure
of fine-tuning. For example, if the data from which the context
is extracted changes very frequently, the improvements it
brings may end up becoming obsolete and ineffective,
necessitating a fresh round of data preparation, training and
testing.

To solve for this, retrieval-augmented generation (RAG)
could be used [5]. The data source is split into self-contained
documents and each document is then embedded through an
embedding model. This model returns a vector for each
document, carrying the embeddings and it is then stored in the
vector database. Whenever a user enters the query, the same
model is used to generate a vector carrying the embeddings
for this query and this vector is compared with the vectors
associated with each document in our database. Similarity
metrics like cosine similarity, Euclidean distance similarity,
or inner product similarity [15] are used to quantify the

relevance of each document and then a list of most similar
documents is generated and returned. This list is then fed to
the LLM for context-rich prompting or other relevant tasks.
For ensuring that the vector database contains the most up-to-
date data, the data source is indexed periodically. However,
this approach can generate inaccurate results if the dataset
changes extremely frequently, for example in stock markets,
as it becomes difficult to keep the data up-to-date each second.
In such cases, the model has to be fed the information from
the SQL databases that are used to maintain the most recent
data [9].

Another problem with RAG systems could be a lack of
relationships between the different documents. GraphRAG is
used in such cases as it can create a graph of related documents
inside a database like Neo4j with which complex relationships
between the related documents can be captured [3], [16].
Multi-modal RAG systems can be used when the retrieval is
not limited to text sources and also includes image or video
content [17].

In order to maximize the efficiency of our retrieval in RAG,
different techniques are used. One such technique is
Hypothetical document embeddings (HyDE) [18]. This
method is used to generate a hypothetical document matching
the response of a user’s query. This hypothetical document is
then used for the retrieval of similar documents by comparing
its embeddings with the embeddings of actual documents in
our database.
Another popular optimization technique is query expansion
[19], [20]. In this technique, synonyms or related words are
attached to a query before the retrieval. This relatively simple
technique can nudge the embedding vector in the right
direction and increase the efficiency of the system.

For extremely large datasets, we can return a large number of
relevant documents during the retrieval stage and then pass
these documents to a model called reranker for re-evaluation
based on similarity and context of the query. This two-stage
retrieval technique is found to be extremely powerful as it
provides more accurate retrieval [21].

Another approach to advance the retrieval process is to rely
on two kinds of vectors, i). Dense vectors and ii). Sparse
vectors. Dense vectors are generated through neural models
trained extensively to predict relationships between a word
and a given dimension. Sparse vectors are generated through
algorithms like BM25 or TF-IDF and represent the keywords
or features in the dataset and the query [22], [23]. A separate
similarity score is generated using sparse vectors and dense
vectors and then the list of retrieved documents through both
vectors is merged using methods like convex combination of
lexical and semantic scores and reciprocal rank fusion [7].
This approach is called hybrid vector search [6] because of its
use of lexical and semantic similarity for retrieval.

45
information datasets, TREC-COVID and NFCorpus, and
based on comparison with dense vector search, dense vector
search with query expansion and hybrid vector search, it was
found that this combination works significantly better than
each of the two techniques when used in isolation.

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1 22

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1
A summary of methods for providing context to LLMs is
presented in table 1 while table 2 presents performance
optimization techniques used in RAG with brief description.

Techniques Suitability

Custom model training Suitable when computational
 costs, and resources are not
.an issue and the data is static

Fine-tuning Suitable for adding context
 when the data source is static
 without having to incur the
 costs associated with custom
.model training

RAG Suitable when the data
 source is subject to frequent
.changes

GraphRAG Suitable when the documents
 also need to be linked with
 each other through
relationships

Multi-modal RAG Suitable when the data
 source can be other than text
 (.(image, video, etc

Table 1: A summary of different techniques used for context-
rich prompting with LLMs

Techniques Explanation

Query Expansion Appends similar words to
 query before embedding to
enhance the context it carries

HyDE A hypothetical response is
.used to enhance retrieval

Hybrid Vector Search Used when both lexical and
 semantic similarity is to be
 paid attention in the retrieval
.process

Table 2: Efficiency optimization techniques in a RAG system
Related Works
A summary of related works is shown in table 3.

Paper Explanation

[1] Providing personalised treatment recommendations
for multiple myeloma using RAG based chatbot

[2] RAG based chatbot for helping patients with
infectious diseases

[11] Enhancing medical information generation by
LLMs using Graph RAG

[12] Used Hybrid RAG for securing medical data
management through Multi-Modal LLMs

[24] Enhanced health-information retrieval by using
 RAG with large language models to improve topical
relevance with factual accuracy

[25] Enhanced electronic medical record search using
 RAG by adapting to individual medical search
semantics

 ,[27] ,[26]
[28]

 Enhanced medical reasoning of LLMs by providing
up-to-date data through RAG

[29] Optimised RAG for medical information retrieval
with a need for follow-up queries by using LLMs

[30] Used sparse encoder and dense vector indexes with
hybrid queries for enhancing RAG efficiency

[31] Used RAG for biomedical questions by filtering
 distractors, using rationale-based queries, and
.reducing retriever bias

[32] Used RAG for query refinement to retrieve medical
information

Table 3: A summary of related works

COMPONENTS OF RETRIEVAL-AUGMENTED
GENERATION
The essential components of a retrieval-augmented generation
system are explained below:
Embedding Models
Embedding models are used to capture the semantic meaning
of text documents. Each model carries a given number of
dimensions, with each dimension representing a unique
feature. Such models generally return a list of numbers with
each number corresponding to the similarity between the
word and the dimension at the given index [33].

Semantic Chunking
Since embedding models have a limitation on the number of
words or sub words that could be passed to them in one
iteration and the given text can have more words than this
limit, we need to either truncate each document at the
prescribed word limit or split the text into individual text
chunks with each chunk respecting the limit of the model.
This process is called chunking.

Semantic chunking divides the text by paying attention to the
semantic meaning of each portion of the text so that the
meaning of the whole document is preserved [34].

Dense Vectors
The vectorized representation of a given text that captures its
semantic meaning through an embedding model is called a
dense vector. Embedding models usually return a separate
vector for each word in the given chunk based on the context
of that word. These vectors are combined together by taking
the average of the predicted relationship of each dimension.
This technique is called mean pooling [35].

23

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1

Where,
n = total number of vectors
v = vector
Sparse Vectors
Sparse vectors are high dimensional vectors in which most of
the values are zeros. The non-zero values reflect the most
repeated keywords or features of a given text. BM25 and TF-
IDF are some of the most widely used methods for generating
this kind of vector [22], [23].

L2 Normalization

L2 normalization is the technique in which we divide each
element of a given embedding vector with the magnitude of
the entire vector to ensure that the resultant vector has
magnitude of 1. It is achieved by the following formula:

where,

 Vector databases
Vector databases store the vectorized representation of a text
source. These stored vectors are later used for retrieval
purposes. Common examples include Pinecone, Weaviate,
Milvus, etc. [36].

Query Expansion
Query expansion is the process of adding similar or related
keywords to a query before using it for retrieval. This method
improves the retrieval quality by nudging the query vector in
the direction of most similar documents [19].

Cosine Similarity
Cosine similarity is used to determine the similarity between
a query and the text documents. It captures the similarity in
the orientations of two vectors without considering their
magnitudes [15]. Mathematically, cosine similarity between
two vectors, A and B, can be computed as:

where,

Dot Product Similarity
Dot product is computed by taking into account both the
magnitude as well as the direction of the vectors [15]. For two
vectors A and B, it can be computed as:

Where,
Hybrid Vector Search
Hybrid vector search is the technique used to enhance the
quality of retrieval by using both dense vector and sparse
vector search. Dense vector and sparse vector similarities are
computed separately using metrics like cosine similarity or
dot product similarity. The list of retrieved documents from
both lists is then combined to form a final list of retrieved
documents [6].

Reciprocal Rank Fusion

This technique generates a unified ranking by using the
reciprocal rank of each document in the individual retrieval
system and adding them together [7]. A small constant, called
bias, is also added to the rank of each individual retrieval
system before combining them to prevent the chance of
division by zero and to minimize the influence of lower
ranked documents. For a given document d, it is computed by
the following mathematical equation:

where,

24
The mathematical formula for mean pooling is given below:

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1

DATA PREPARATION AND METHODOLOGY

Datasets Used
Two medical datasets, TREC-COVID [37] and NFCorpus
[38] were used for this study. Both the datasets contain queries
which are associated with text articles present in the dataset.
Relationship between the queries and corpus is established by
classifying the articles as:
a). Highly relevant
b). Partially relevant
c). not relevant at all [39]
For this study, all 50 queries from NFCorpus and 50 queries
from TREC-COVID were selected. The query sample from
TREC-COVID was taken randomly.

A total of 1047 documents were indexed from NFCorpus and
17,537 documents were indexed from TREC-COVID. Each
of the documents was relevant to at least one of the queries.
For this paper, the documents were classified as only:
a). Relevant to a query
b). Not relevant to a query

These datasets were used because:
a). Both of them are large datasets carrying information
related to the medical sector with queries already related and
marked as relevant or not relevant against the documents in
the corpus.
b). TREC-COVID is mostly related to information about
Covid-19 virus and is therefore more domain specific while
NFCorpus is related to general information about a wide
range of health related topics. This ensured that we could get
performance insights for both general-purpose and domain
focused topics ensuring a more nuanced understanding of the
approach.
c). This setup allows us to evaluate our retrieval system’s
performance across datasets of different size as large datasets
tend to have lower values of recall because of the presence of
high number of relevant documents per query while smaller
datasets may show good recall because of the presence of a
relatively small number of topics, or documents. The dual
evaluation helps in accounting for scale-related biases and
reaching generalizable results.
Both the datasets were downloaded using BEIR’s python
wrapper.

Experimental Setup
Following steps were used to perform the experiment for each

dataset:
a). Split the dataset into chunks using semantic chunking
through Python’s semchunk package.
b). Embedded each chunk of document using bidirectional-
encoder representations from transformers (BERT)’s bert-
base-uncased-model with mean pooling.
c). Each documents’ chunks were then combined into one
final vector by averaging the vectors corresponding to each
chunk.
d). BM25 encoder was fitted on each dataset’s text corpus and
stored in a separate file using Python’s pickle library.
Pinecone’s BM25 wrapper was used for this purpose.
e). Sparse vectors for each document were generated using
the fitted encoder.
f). Two local instances of the milvus database were created
for each dataset. One carried only dense vectors for each
selected document in the dataset and one stored both dense
and sparse vectors.
g). Against each query, five keywords were obtained using
OpenAI’s GPT-4o mini model. The following prompt was
used for generating the keywords:
“Give me 5 comma separated keywords for this query. Return
nothing else”.
h). For dense vector retrieval, cosine similarity was used and
for sparse vector retrieval, dot product similarity was used.
i). For hybrid vector retrieval, the retrieved lists for both
dense and sparse vectors were combined using reciprocal
rank fusion in milvus. A bias value of 100 was chosen as it
falls in the recommended range of 10 to 100 [40] and being
on the higher side, ensures that both dense and sparse retrieval
systems contribute meaningfully to the final rankings without
one dominating the other.
j). Four kinds of retrievals were performed for each query: i).
Dense vector retrieval, ii). Dense vector retrieval with
keywords, iii). Hybrid vector retrieval and iv). Hybrid vector
retrieval with keywords.
k) For dense vector and hybrid vector retrieval, the queries
were vectorized directly and then used for similarity search.
l). For dense vector search with keywords and hybrid vector
search with keywords, the queries were vectorized in the
following format and then used for similarity search:
“{{Query}}
Keywords: {{comma separated keywords}}”
The architecture of each retrieval strategy is also demonstrated
in Figure 1, Figure 2, Figure 3, and Figure 4.

25

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1

Figure 1: Dense vector retrieval

Figure 2: Dense vector retrieval with query expansion

Figure 3: Hybrid vector retrieval

Figure 4: Hybrid vector retrieval with query expansion

Evaluation Metrics
a). Mean Reciprocal Rank at k (MRR@k)
Mean reciprocal rank at k is used to determine the rank of the
first relevant document in the list of retrieved documents
[41]. Mathematically, it can be computed as:

Where,

n = number of queries
Ranki = Rank of the most relevant document in the first k
number of retrieved documents
Precision at k (P@k)
It gives us the proportion of relevant documents out of top k
retrieved documents. It is calculated by the following formula
[42]:

Recall at k (R@k)
This metric tells us the proportion of relevant documents that
were retrieved out of the total number of relevant documents
[42].

However, in many cases, there could be a large number of
relevant documents per query which would result in extremely
low values of recall, thus making it a little ineffective indicator
of performance. For such cases, it is better to calculate the F1
as discussed below.

F1 Score at k (F1@k)
This metric is used to combine both P@k and R@k into a
single metric by balancing the weight assigned to each of
them through harmonic mean [42]. It is given by the following
formula:

For this paper, the value of k was taken to be 15.

Baseline for Evaluation
Simple dense vector search results were used as a baseline to
measure the improvement brought by each retrieval system as
measured by the evaluation metrics discussed above.

RESULTS AND DISCUSSIONS
The results of each retrieval mechanism for both datasets, as
measured by mean reciprocal rank at k, precision at k, recall
at k, and F1 score at k, with k=15, are presented in Figure 5,
Figure 6, Figure 7, and Figure 8 respectively. Percentage
improvements in each metric, when compared with simple
dense vector search, is presented in table 4 and table 5 for
TREC-COVID and NFCorpus respectively.

26

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1
The heat maps for reciprocal ranks and F1 scores are presented
in Figure 9, Figure 10, Figure 11 and Figure 12. These heat
maps show that hybrid vectors with query expansion give the
most accurate retrieval results. Moreover, the queries with
few words show the most pronounced improvement when
this combination is used. For example, for the following
query in NFCorpus dataset:

“alternative medicine”,

The reciprocal rank improved from 0.2 to 1 and F1 score
improved from 0.037 to 0.074 when hybrid vector search was
used in combination with query expansion.

When considered against the baseline of simple dense vector
search, these improvements can be attributed to the combined
effect of following factors:

i). Query expansion improves the performance by adding
more context through keywords and removing ambiguity
from queries before they are vectorized. The chances for
adding noise through keywords is minimal because modern
LLMs are fully capable of understanding complex context
and generating keywords based on that.

ii). Sparse vector retrieval system accounts for repeated
keywords in the corpus and queries which enhances the
retrieval quality.

Across the two datasets, TREC-COVID shows higher values
of MRR and precision while NFCorpus shows higher values
of recall and F1 scores. This can be attributed to the following
factors:

i). TREC-COVID is a domain-specific dataset and contains
consistent phrasing and jargon while NFCorpus contains
diverse topics and inconsistent jargon which can confuse the
retriever.

ii). TREC-COVID had more documents in our database
(17,537) compared to NFCorpus (1,047) and therefore, carries
more relevant documents per query, making it difficult to
retrieve all relevant documents and therefore, resulting in
lower values of recall while simultaneously increasing the
value of precision.

iii). F1 Scores provide a harmonic mean between both
precision and recall offering a balanced retrieval performance.
The percentage improvement in F1 scores (155.56% for
TREC-COVID vs 146.30% for NFCorpus), when compared
with the baseline of simple dense vector search, is more
pronounced in TREC-COVID because of its domain-
specificity (See table 4 and table 5).

iv). Smaller value for F1 score (0.046 for TREC-COVID vs
0.133 for NFCorpus) for TREC-COVID can be explained by
the low recall values because of the presence of a high number
of relevant documents per query.

Overall, the results suggest that hybrid vector search with
query expansion improves the performance across both small,
large, general, and domain-specific datasets as the proposed
system improved MRR, precision, recall and F1 scores for
both datasets when compared with the benchmark of simple
dense vector search.

 Dense vector
 w i t h
keywords

 H y b r i d
vectors

 H y b r i d
 vectors with
keywords

MRR@k 8.99 65.79 65.35

P@k 47.83 106.16 127.54

R@k 55.56 144.44 166.67

k@F1 50 127.78 155.56

Table 4: Percentage improvement through each retrieval
system in TREC-COVID

 Dense vector
with keywords

 H y b r i d
vectors

 H y b r i d
 vectors with
keywords

MRR@k 97.18 172.32 236.16

P@k 34.78 122.83 151.09

Rl@k 36.36 156.06 213.64

k@F1 40.74 107.41 146.30

Table 5: Percentage improvement through each retrieval
system in NFCorpus

Figure 5: MRR@k with different retrieval strategies

27

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1

Figure 6: P@k with different retrieval strategies

Figure 7: R@k with different retrieval strategies

Figure 8: F1@k with different retrieval strategies

Figure 9: Heat map for reciprocal ranks @k for each query of
TREC-COVID

Figure 10: F1@k Scores heat map for each query of TREC-
COVID

Figure 11: Heat map for reciprocal ranks @k for each query of
NFCorpus

Figure 12: F1@k heat map for each query of NFCorpus

CONCLUSIONS
In the light of this study, it is found that hybrid vector search
with query expansion using an LLM like OpenAI’s GPT-4o
mini can be used to improve the medical information retrieval
process significantly and cost-effectively. It is also found that,
when compared with plain dense vector search, dense vector
search with query expansion, and hybrid vector search, this
approach is the most efficient.

This study is significant because the proposed framework can
be applied to other practical applications easily.
In the future, this study can be extended by applying this
method using knowledge graphs as many real-world
applications involve medical documents with complex
relationships to each other.

28

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1
DECLARATION OF COMPETING INTERESTS
The author declares no competing interests associated with
this work.

REFERENCES
[1] M. A. Quidwai and A. Lagana, “A RAG chatbot for

precision medicine of multiple myeloma,” medRxiv,
Mar. 2024, doi: 10.1101/2024.03.14.24304293.

[2] S. Kirubakaran S, J. W. K. G, G. M. K. E, M. R. J, R. G.
Singh A, and Y. E, “A RAG-based Medical Assistant
Especially for Infectious Diseases,” in 2024 International
Conference on Inventive Computation Technologies
(ICICT), Apr. 2024, pp. 1128–1133, doi: 10.1109/
ICICT60155.2024.10544639.

[3] T. T. Procko and O. Ochoa, “Graph Retrieval-
Augmented Generation for Large Language Models: A
Survey,” in 2024 Conference on AI, Science,
Engineering, and Technology (AIxSET), Sep. 2024, pp.
166–169, doi: 10.1109/AIxSET62544.2024.00030.

[4] Q. Dong et al., “A Survey for In-context Learning,”
arXiv, 2023, doi: 10.48550/arxiv.2301.00234.

[5] P. Lewis et al., “Retrieval-augmented generation for
knowledge-intensive NLP tasks,” arXiv, 2020, doi:
10.48550/arxiv.2005.11401.

[6] R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi,
and D. Petrelli, “Hybrid search: effectively combining
keywords and semantic searches,” in The semantic web:
research and applications, S. Bechhofer, M. Hauswirth,
J. Hoffmann, and M. Koubarakis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 554–
568.

[7] G. V. Cormack, C. L. A. Clarke, and S. Buettcher,
“Reciprocal rank fusion outperforms condorcet and
individual rank learning methods,” in Proceedings of
the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
New York, NY, USA, Jul. 2009, pp. 758–759, doi:
10.1145/1571941.1572114.

[8] Z. Bai et al., “GQE: Generalized Query Expansion for
Enhanced Text-Video Retrieval,” arXiv, 2024, doi:
10.48550/arxiv.2408.07249.

[9] “How Q4 Inc. used Amazon Bedrock, RAG, and
SQLDatabaseChain to address numerical and structured
dataset challenges building their Q&A chatbot | AWS
Machine Learning Blog.” https://aws.amazon.com/
blogs/machine-learning/how-q4-inc-used-amazon-
bedrock-rag-and-sqldatabasechain-to-address-

numerical-and-structured-dataset-challenges-building-
their-qa-chatbot/ (accessed Jan. 19, 2025).

[10] AI at Wharton and GBK Collective, “Growing Up:
Navigating Generative AI’s Early Years ,” AI at
Wharton, Oct. 2024.

[11] J. Wu, J. Zhu, and Y. Qi, “Medical Graph RAG: Towards
Safe Medical Large Language Model via Graph
Retrieval-Augmented Generation,” arXiv, 2024, doi:
10.48550/arxiv.2408.04187.

[12] C. Su et al., “Hybrid RAG-empowered Multi-modal
LLM for Secure Data Management in Internet of
Medical Things: A Diffusion-based Contract Approach,”
arXiv, 2024, doi: 10.48550/arxiv.2407.00978.

[13] R. Behnia, M. R. Ebrahimi, J. Pacheco, and B.
Padmanabhan, “EW-Tune: A Framework for Privately
Fine-Tuning Large Language Models with Differential
Privacy,” in 2022 IEEE International Conference on
Data Mining Workshops (ICDMW), Nov. 2022, pp.
560–566, doi: 10.1109/ICDMW58026.2022.00078.

[14] J. Lu, “Low-Rank Approximation, Adaptation, and
Other Tales,” arXiv, 2024, doi: 10.48550/
arxiv.2408.05883.

[15] C. D. Manning, P. Raghavan, and H. Schutze,
Introduction to information retrieval. Cambridge:
Cambridge University Press, 2008.

[16] J. J. Miller, “Graph database applications and concepts
with Neo4j,” in Proceedings of the Southern Association
for Information Systems Conference, 2013, vol. 2324,
pp. 141--147.

[17] W. Lin, J. Chen, J. Mei, A. Coca, and B. Byrne, “Fine-
grained late-interaction multi-modal retrieval for
retrieval augmented visual question answering,”
presented at the 37th International Conference on
Neural Information Processing Systems (NeurIPS
2024), Red Hook, NY, USA, 2024.

[18] M. Jostmann, “Evaluation of Hypothetical Document
and Query Embeddings for Information Retrieval
Enhancements in the Context of Diverse User Queries,”
University of Muenster, Institutional Repository
MIAMI, 2024, doi: 10.17879/25968508220.

[19] H. K. Azad and A. Deepak, “Query expansion techniques
for information retrieval: A survey,” Information
Processing & Management, vol. 56, no. 5, pp. 1698–
1735, Sep. 2019, doi: 10.1016/j.ipm.2019.05.009.

29

“Improving Video Retrieval Performance with Query
Expansion Using ChatGPT,” in Proceedings of the 2024
7th International Conference on Image and Graphics
Processing, New York, NY, USA, Jan. 2024, pp. 431–
436, doi: 10.1145/3647649.3647716.

[21] M. Glass, G. Rossiello, M. F. M. Chowdhury, A. Naik,
P. Cai, and A. Gliozzo, “Re2g: retrieve, rerank,
generate,” in Proceedings of the 2022 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Stroudsburg, PA, USA, 2022, pp. 2701–
2715, doi: 10.18653/v1/2022.naacl-main.194.

[22] S. Robertson, “The probabilistic relevance framework:
BM25 and beyond,” FNT in Information Retrieval, vol.
3, no. 4, pp. 333–389, 2010, doi: 10.1561/1500000019.

[23] A. Aizawa, “An information-theoretic perspective of tf–
idf measures,” Information Processing & Management,
vol. 39, no. 1, pp. 45–65, Jan. 2003, doi: 10.1016/
S0306-4573(02)00021-3.

[24] R. Upadhyay and M. Viviani, “Enhancing Health
Information Retrieval with RAG by prioritizing topical
relevance and factual accuracy,” Discov Computing,
vol. 28, no. 1, p. 27, Apr. 2025, doi: 10.1007/s10791-
025-09505-5.

[25] C. Ye, “Exploring a learning-to-rank approach to
enhance the Retrieval Augmented Generation (RAG)-
based electronic medical records search engines,”
Informatics and Health, vol. 1, no. 2, pp. 93–99, Sep.
2024, doi: 10.1016/j.infoh.2024.07.001.

[26] Z. Hammane, F.-E. Ben-Bouazza, and A. Fennan,
“SelfRewardRAG: Enhancing Medical Reasoning with
Retrieval-Augmented Generation and Self-Evaluation
in Large Language Models,” in 2024 International
Conference on Intelligent Systems and Computer Vision
(ISCV), May 2024, pp. 1–8, doi: 10.1109/
ISCV60512.2024.10620139.

[27] K. K. Y. Ng, I. Matsuba, and P. C. Zhang, “RAG in
Health Care: A Novel Framework for Improving
Communication and Decision-Making by Addressing
LLM Limitations,” NEJM AI, vol. 2, no. 1, Jan. 2025,
doi: 10.1056/AIra2400380.

[28] K. Kharitonova, D. Pérez-Fernández, J. Gutiérrez-
Hernando, A. Gutiérrez-Fandiño, Z. Callejas, and D.
Griol, “Leveraging Retrieval-Augmented Generation
for Reliable Medical Question Answering Using Large
Language Models,” in Hybrid artificial intelligent

systems: 19th international conference, HAIS 2024,
salamanca, spain, october 9–11, 2024, proceedings, part
II, vol. 14858, H. Quintián, E. Corchado, A. Troncoso
Lora, H. Pérez García, E. Jove Pérez, J. L. Calvo Rolle,
F. J. Martínez de Pisón, P. García Bringas, F. Martínez
Álvarez, Á. Herrero, and P. Fosci, Eds. Cham: Springer
Nature Switzerland, 2025, pp. 141–153.

[29] G. Xiong, Q. Jin, X. Wang, M. Zhang, Z. Lu, and A.
Zhang, “Improving Retrieval-Augmented Generation in
Medicine with Iterative Follow-up Questions.,” Pac.
Symp. Biocomput., vol. 30, pp. 199–214, 2025, doi:
10.1142/9789819807024_0015.

[30] K. Sawarkar, A. Mangal, and S. R. Solanki, “Blended
RAG: Improving RAG (Retriever-Augmented
Generation) Accuracy with Semantic Search and Hybrid
Query-Based Retrievers,” in 2024 IEEE 7th International
Conference on Multimedia Information Processing and
Retrieval (MIPR), Aug. 2024, pp. 155–161, doi:
10.1109/MIPR62202.2024.00031.

[31] J. Sohn et al., “Rationale-Guided Retrieval Augmented
Generation for Medical Question Answering,” arXiv,
2024, doi: 10.48550/arxiv.2411.00300.

[32] A. Tommasel and I. Assent, “Semantic grounding of
LLMs using knowledge graphs for query reformulation
in medical information retrieval,” in 2024 IEEE
International Conference on Big Data (BigData), Dec.
2024, pp. 4048–4057, doi: 10.1109/
BigData62323.2024.10826117.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv, 2013, doi: 10.48550/arxiv.1301.3781.

[34] R. Qu, R. Tu, and F. Bao, “Is Semantic Chunking Worth
the Computational Cost?,” arXiv, 2024, doi: 10.48550/
arxiv.2410.13070.

[35] Q. Chen, Z.-H. Ling, and X. Zhu, “Enhancing Sentence
Embedding with Generalized Pooling,” arXiv, 2018,
doi: 10.48550/arxiv.1806.09828.

[36] J. J. Pan, J. Wang, and G. Li, “Survey of vector database
management systems,” The VLDB Journal, vol. 33, no.
5, pp. 1591–1615, Sep. 2024, doi: 10.1007/s00778-024-
00864-x.

[37] E. Voorhees et al., “TREC-COVID: constructing a
pandemic information retrieval test collection,” SIGIR
Forum, vol. 54, no. 1, pp. 1–12, Jun. 2020, doi:
10.1145/3451964.3451965.

53
[20] K. Ueki, Y. Suzuki, H. Takushima, and T. Hori,

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1 30

Journal of Information & Communication Technology - JICT Vol. 19 Issue. 1
[38] V. Boteva, D. Gholipour, A. Sokolov, and S. Riezler, “A

Full-Text Learning to Rank Dataset for Medical
Information Retrieval,” in Advances in information
retrieval, vol. 9626, N. Ferro, F. Crestani, M.-F. Moens,
J. Mothe, F. Silvestri, G. M. Di Nunzio, C. Hauff, and G.
Silvello, Eds. Cham: Springer International Publishing,
2016, pp. 716–722.

[39] National Institute of Standards and Technology, U.S.
Department of Commerce, “TREC-COVID Round 2
Task Guidelines.” https://ir.nist.gov/trec-covid/round2.
html?utm_source (accessed Jan. 19, 2025).

[40] “Reranking | Milvus Documentation.” https://milvus.io/
docs/reranking.md (accessed Jun. 18, 2025).

[41] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating
Web-based Question Answering Systems,” in
Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC‘02), Las
Palmas, Canary Islands - Spain, May 2002.

[42] D. Powers and Ailab, “Evaluation: From precision, recall
and F-measure to ROC, informedness, markedness &
correlation,” Mach. Learn. Technol, vol. 2, pp. 2229–
3981, Jan. 2011.

31

