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Abstract- The rise of large language models (LLMs) has 
improved people’s access to medical information. These 
LLMs, however, lack the domain-specific knowledge 
essential to answering more specialized questions. To plug 
this knowledge gap, this paper explores the use of retrieval-
augmented generation.  A comparative analysis of four 
different retrieval strategies — dense vector search, dense 
vector search with query expansion, hybrid vector search, 
and hybrid vector search with query expansion —  was 
carried out and a combination of hybrid vector search 
with query expansion was found to be the most effective 
retrieval strategy. This framework will help efficient and 
cost effective information retrieval for chatbot used in the 
medical sector. At the same time, because of its generic 
nature, this proposed combination can be used for 
applications in other fields.
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INTRODUCTION
Efficient retrieval of information about different medical 
conditions and individual patient’s history has become 
important for personalized treatment plans and effective 
recovery of patients. The rise of large language models 
(LLMs) has increased the adoption of generative AI to achieve 
these goals, especially by building chat bots [1]. These chat 
bots, with accurate information, can also help patients in 
countries where the doctor-to-patient ratio is quite low in 
accessing reliable and correct information about different 
diseases [2].

While the LLMs used in such chat bots have the capability to 
answer complex queries, and perform tasks that are related to 
information already stored in their parameters, they are not 
capable of answering questions about domain-specific topics 
like medical records of an individual [3]. 

In order to use these models for such specialized tasks, it is 
important to provide them with the necessary context through 
the prompt, a technique called in-context learning [4]. This is 
where strategies like Retrieval-Augmented Generation (RAG) 
come into play [5]. Before any query is passed to the LLM, it 

is converted to vectors, also called dense vectors, by an 
embedding model and this vector is passed to a vector 
database which already carries a list of documents that could 
be relevant to the user’s queries. The necessary contextual 
information is then retrieved from this database by comparing 
the query vector with vectors associated with each document 
of the corpus and ranking it in the order of similarity. This 
similarity score is generated through metrics like cosine 
similarity, dot product similarity and Euclidean distance 
similarity. The retrieved context is then passed to the LLM as 
part of its prompt using which it would provide an answer to 
the query.

However, for retrieval from a large corpus of documents, 
plain dense vector search is often not enough and we need to 
pair it with more advanced techniques. One such technique is 
hybrid vector search where, in addition to dense vectors, 
sparse vectors representing the keywords associated with the 
corpus are also stored and used for retrieval [6]. The similarity 
is computed individually for both dense and sparse vectors 
and then the retrieved documents lists are merged together by 
assigning weights to both retrieval systems or through 
advanced techniques like reciprocal rank fusion (RFF) [7] .
Another technique that is used to optimize retrieval is query 
expansion [8]. A model like BERT, or Word2Vec is trained on 
the documents and is then used to generate keywords based 
on the user’s query. Queries are also rephrased, as part of this 
technique, to attach more context and to ensure the embedding 
model orients the vector in the direction which conveys the 
highest context.

However, training and hosting a model for query expansion is 
costly and time consuming. This is where LLMs, with their 
APIs, provide relief by doing all that we have to do for query 
expansion without the need to train or host a model, thus 
eliminating the need for computational capacity and the 
associated costs. These LLMs can also be used for guiding the 
retrieval process because, as they are trained on vast amounts 
of data, they can be used for deciding whether a particular 
query needs the retrieval process or can be answered without 
any context. Moreover, an LLM can also generate SQL 
queries thus, enabling direct data retrieval from databases [9].
In this paper, both hybrid vector search and query expansion 
using OpenAI’s GPT-4o mini were combined to maximize the 
efficiency of the retrieval process over two medical 
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LITERATURE REVIEW
Large language models (LLMs) are getting a lot of attention 
recently for performing tasks related to report generation, 
student counselling, content writing, marketing, HR divisions, 
and code generation [10]. This trend has also resulted in more 
applications focusing on the uses of natural language 
processing in the medical sector [1], [2], [11], [12]. While 
these models can perform some of these tasks very efficiently, 
they need industry-specific, individual-specific or company-
specific training to perform specialized tasks related to these 
areas.

One way to provide this information is to fine-tune these 
LLMs as this adjusts the weights of the models as per the 
additional data and as a result, the model can answer the 
queries in a more context-aware manner [9].

However, this approach also presents a few problems of its 
own. For instance, many people might not be completely 
comfortable with their data being used to train an LLM which 
is essentially used by everyone [13]. This problem may be 
solved by deciding to train a completely new model or by 
using secure fine tuning strategies [13].

Fine-tuning can also increase training and deployment costs 
but this problem can be mitigated by using solutions like low-
rank adaptation (LoRA) where instead of training the whole 
model, we just freeze the weights of most of the layers and 
add low-rank matrices carrying fresh weights to be used in a 
few layers generating better results [14].

The nature of data also has an impact on the success or failure 
of fine-tuning. For example, if the data from which the context 
is extracted changes very frequently, the improvements it 
brings may end up becoming obsolete and ineffective, 
necessitating a fresh round of data preparation, training and 
testing.

To solve for this, retrieval-augmented generation (RAG) 
could be used [5]. The data source is split into self-contained 
documents and each document is then embedded through an 
embedding model. This model returns a vector for each 
document, carrying the embeddings and it is then stored in the 
vector database. Whenever a user enters the query, the same 
model is used to generate a vector carrying the embeddings 
for this query and this vector is compared with the vectors 
associated with each document in our database. Similarity 
metrics like cosine similarity, Euclidean distance similarity, 
or inner product similarity [15] are used to quantify the 

relevance of each document and then a list of most similar 
documents is generated and returned. This list is then fed to 
the LLM for context-rich prompting or other relevant tasks.
For ensuring that the vector database contains the most up-to-
date data, the data source is indexed periodically. However, 
this approach can generate inaccurate results if the dataset 
changes extremely frequently, for example in stock markets, 
as it becomes difficult to keep the data up-to-date each second. 
In such cases, the model has to be fed the information from 
the SQL databases that are used to maintain the most recent 
data [9].

Another problem with RAG systems could be a lack of 
relationships between the different documents. GraphRAG is 
used in such cases as it can create a graph of related documents 
inside a database like Neo4j with which complex relationships 
between the related documents can be captured [3], [16]. 
Multi-modal RAG systems can be used when the retrieval is 
not limited to text sources and also includes image or video 
content [17].

In order to maximize the efficiency of our retrieval in RAG, 
different techniques are used. One such technique is 
Hypothetical document embeddings (HyDE) [18]. This 
method is used to generate a hypothetical document matching 
the response of a user’s query. This hypothetical document is 
then used for the retrieval of similar documents by comparing 
its embeddings with the embeddings of actual documents in 
our database.
Another popular optimization technique is query expansion 
[19], [20]. In this technique, synonyms or related words are 
attached to a query before the retrieval. This relatively simple 
technique can nudge the embedding vector in the right 
direction and increase the efficiency of the system.

For extremely large datasets, we can return a large number of 
relevant documents during the retrieval stage and then pass 
these documents to a model called reranker for re-evaluation 
based on similarity and context of the query. This two-stage 
retrieval technique is found to be extremely powerful as it 
provides more accurate retrieval [21].

Another approach to advance the retrieval process is to rely 
on two kinds of vectors, i). Dense vectors and ii). Sparse 
vectors. Dense vectors are generated through neural models 
trained extensively to predict relationships between a word 
and a given dimension. Sparse vectors are generated through 
algorithms like BM25 or TF-IDF and represent the keywords 
or features in the dataset and the query [22], [23]. A separate 
similarity score is generated using sparse vectors and dense 
vectors and then the list of retrieved documents through both 
vectors is merged using methods like convex combination of 
lexical and semantic scores and reciprocal rank fusion [7]. 
This approach is called hybrid vector search [6] because of its 
use of lexical and semantic similarity for retrieval.

45
information datasets, TREC-COVID and NFCorpus, and 
based on comparison with dense vector search, dense vector 
search with query expansion and hybrid vector search, it was 
found that this combination works significantly better than 
each of the two techniques when used in isolation.
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A summary of methods for providing context to LLMs is 
presented in table 1 while table 2 presents performance 
optimization techniques used in RAG with brief description.

Techniques Suitability

Custom model training  Suitable when computational
 costs, and resources are not
.an issue and the data is static

Fine-tuning  Suitable for adding context
 when the data source is static
 without having to incur the
 costs associated with custom
.model training

RAG  Suitable when the data
 source is subject to frequent
.changes

GraphRAG  Suitable when the documents
 also need to be linked with
 each other through
relationships

Multi-modal RAG  Suitable when the data
 source can be other than text
 (.(image, video, etc

Table 1: A summary of different techniques used for context-
rich prompting with LLMs

Techniques Explanation

Query Expansion  Appends similar words to
 query before embedding to
enhance the context it carries

HyDE  A hypothetical response is
.used to enhance retrieval

Hybrid Vector Search  Used when both lexical and
 semantic similarity is to be
 paid attention in the retrieval
.process

Table 2: Efficiency optimization techniques in a RAG system
Related Works
A summary of related works is shown in table 3. 

Paper Explanation

[1]  Providing personalised treatment recommendations
for multiple myeloma using RAG based chatbot

[2]  RAG based chatbot for helping patients with
infectious diseases

[11]  Enhancing medical information generation by
LLMs using Graph RAG

[12]  Used Hybrid RAG for securing medical data
management through Multi-Modal LLMs

[24]  Enhanced health-information retrieval by using
 RAG with large language models to improve topical
relevance with factual accuracy

[25]  Enhanced electronic medical record search using
 RAG by adapting to individual medical search
semantics

 ,[27] ,[26]
[28]

 Enhanced medical reasoning of LLMs by providing
up-to-date data through RAG

[29]  Optimised RAG for medical information retrieval
with a need for follow-up queries by using LLMs

[30]  Used sparse encoder and dense vector indexes with
hybrid queries for enhancing RAG efficiency

[31]  Used RAG for biomedical questions by filtering
 distractors, using rationale-based queries, and
.reducing retriever bias

[32]  Used RAG for query refinement to retrieve medical
information

Table 3: A summary of related works

COMPONENTS OF RETRIEVAL-AUGMENTED 
GENERATION
The essential components of a retrieval-augmented generation 
system are explained below:
Embedding Models
Embedding models are used to capture the semantic meaning 
of text documents. Each model carries a given number of 
dimensions, with each dimension representing a unique 
feature. Such models generally return a list of numbers with 
each number corresponding to the similarity between the 
word and the dimension at the given index [33].

Semantic Chunking
Since embedding models have a limitation on the number of 
words or sub words that could be passed to them in one 
iteration and the given text can have more words than this 
limit, we need to either truncate each document at the 
prescribed word limit or split the text into individual text 
chunks with each chunk respecting the limit of the model. 
This process is called chunking. 

Semantic chunking divides the text by paying attention to the 
semantic meaning of each portion of the text so that the 
meaning of the whole document is preserved [34].

Dense Vectors
The vectorized representation of a given text that captures its 
semantic meaning through an embedding model is called a 
dense vector. Embedding models usually return a separate 
vector for each word in the given chunk based on the context 
of that word. These vectors are combined together by taking 
the average of the predicted relationship of each dimension. 
This technique is called mean pooling [35]. 
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Where,
n = total number of vectors
v = vector
Sparse Vectors
Sparse vectors are high dimensional vectors in which most of 
the values are zeros. The non-zero values reflect the most 
repeated keywords or features of a given text. BM25 and TF-
IDF are some of the most widely used methods for generating 
this kind of vector [22], [23].

L2 Normalization

L2 normalization is the technique in which we divide each 
element of a given embedding vector with the magnitude of 
the entire vector to ensure that the resultant vector has 
magnitude of 1. It is achieved by the following formula:

where,

 Vector databases
Vector databases store the vectorized representation of a text 
source. These stored vectors are later used for retrieval 
purposes. Common examples include Pinecone, Weaviate, 
Milvus, etc. [36].

Query Expansion
Query expansion is the process of adding similar or related 
keywords to a query before using it for retrieval. This method 
improves the retrieval quality by nudging the query vector in 
the direction of most similar documents [19].

Cosine Similarity
Cosine similarity is used to determine the similarity between 
a query and the text documents. It captures the similarity in 
the orientations of two vectors without considering their 
magnitudes [15]. Mathematically, cosine similarity between 
two vectors, A and B, can be computed as:

where,

 
Dot Product Similarity
Dot product is computed by taking into account both the 
magnitude as well as the direction of the vectors [15]. For two 
vectors A and B, it can be computed as:

Where,
Hybrid Vector Search
Hybrid vector search is the technique used to enhance the 
quality of retrieval by using both dense vector and sparse 
vector search. Dense vector and sparse vector similarities are 
computed separately using metrics like cosine similarity or 
dot product similarity. The list of retrieved documents from 
both lists is then combined to form a final list of retrieved 
documents [6]. 

Reciprocal Rank Fusion

This technique generates a unified ranking by using the 
reciprocal rank of each document in the individual retrieval 
system and adding them together [7]. A small constant, called 
bias, is also added to the rank of each individual retrieval 
system before combining them to prevent the chance of 
division by zero and to minimize the influence of lower 
ranked documents. For a given document d, it is computed by 
the following mathematical equation:

where,
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DATA PREPARATION AND METHODOLOGY

Datasets Used
Two medical datasets, TREC-COVID [37] and NFCorpus 
[38] were used for this study. Both the datasets contain queries 
which are associated with text articles present in the dataset. 
Relationship between the queries and corpus is established by 
classifying the articles as:
a). Highly relevant
b). Partially relevant
c). not relevant at all [39]
For this study, all 50 queries from NFCorpus and 50 queries 
from TREC-COVID were selected. The query sample from 
TREC-COVID was taken randomly. 

A total of 1047 documents were indexed from NFCorpus and 
17,537 documents were indexed from TREC-COVID. Each 
of the documents was relevant to at least one of the queries. 
For this paper, the documents were classified as only:
a). Relevant to a query
b). Not relevant to a query

These datasets were used because:
a). Both of them are large datasets carrying information 
related to the medical sector with queries already related and 
marked as relevant or not relevant against the documents in 
the corpus.
b). TREC-COVID is mostly related to information about 
Covid-19 virus and is therefore more domain specific while 
NFCorpus is related to general information about a wide 
range of health related topics. This ensured that we could get 
performance insights for both general-purpose and domain 
focused topics ensuring a more nuanced understanding of the 
approach.
c). This setup allows us to evaluate our retrieval system’s 
performance across datasets of different size as large datasets 
tend to have lower values of recall because of the presence of 
high number of relevant documents per query while smaller 
datasets may show good recall because of the presence of a 
relatively small number of topics, or documents. The dual 
evaluation helps in accounting for scale-related biases and 
reaching generalizable results.
Both the datasets were downloaded using BEIR’s python 
wrapper.

Experimental Setup
Following steps were used to perform the experiment for each 

dataset:
a). Split the dataset into chunks using semantic chunking 
through Python’s semchunk package.
b). Embedded each chunk of document using bidirectional-
encoder representations from transformers (BERT)’s bert-
base-uncased-model with mean pooling.
c). Each documents’ chunks were then combined into one 
final vector by averaging the vectors corresponding to each 
chunk.
d). BM25 encoder was fitted on each dataset’s text corpus and 
stored in a separate file using Python’s pickle library. 
Pinecone’s BM25 wrapper was used for this purpose.
e). Sparse vectors for each document were generated using 
the fitted encoder.
f). Two local instances of the milvus database were created 
for each dataset. One carried only dense vectors for each 
selected document in the dataset and one stored both dense 
and sparse vectors.
g). Against each query, five keywords were obtained using 
OpenAI’s GPT-4o mini model. The following prompt was 
used for generating the keywords:
“Give me 5 comma separated keywords for this query. Return 
nothing else”.
h). For dense vector retrieval, cosine similarity was used and 
for sparse vector retrieval, dot product similarity was used.
i). For hybrid vector retrieval, the retrieved lists for both 
dense and sparse vectors were combined using reciprocal 
rank fusion in milvus. A bias value of 100 was chosen as it 
falls in the recommended range of 10 to 100 [40]  and being 
on the higher side, ensures that both dense and sparse retrieval 
systems contribute meaningfully to the final rankings without 
one dominating the other.
j). Four kinds of retrievals were performed for each query: i). 
Dense vector retrieval, ii). Dense vector retrieval with 
keywords, iii). Hybrid vector retrieval and iv). Hybrid vector 
retrieval with keywords.
k) For dense vector and hybrid vector retrieval, the queries 
were vectorized directly and then used for similarity search.
l). For dense vector search with keywords and hybrid vector 
search with keywords, the queries were vectorized in the 
following format and then used for similarity search:
“{{Query}}
Keywords: {{comma separated keywords}}”
The architecture of each retrieval strategy is also demonstrated 
in Figure 1, Figure 2, Figure 3, and Figure 4.
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Figure 1: Dense vector retrieval

Figure 2: Dense vector retrieval with query expansion

Figure 3: Hybrid vector retrieval

Figure 4: Hybrid vector retrieval with query expansion

Evaluation Metrics
a). Mean Reciprocal Rank at k (MRR@k)
Mean reciprocal rank at k is used to determine the rank of the 
first relevant document in the list of retrieved documents 
[41]. Mathematically, it can be computed as:

Where,

n = number of queries
Ranki = Rank of the most relevant document in the first k 
number of retrieved documents
Precision at k (P@k)
It gives us the proportion of relevant documents out of top k 
retrieved documents. It is calculated by the following formula  
[42]:

Recall at k (R@k)
This metric tells us the proportion of relevant documents that 
were retrieved out of the total number of relevant documents  
[42].

However, in many cases, there could be a large number of 
relevant documents per query which would result in extremely 
low values of recall, thus making it a little ineffective indicator 
of performance. For such cases, it is better to calculate the F1 
as discussed below.

F1 Score at k (F1@k)
This metric is used to combine both P@k and R@k into a 
single metric by balancing the weight assigned to each of 
them through harmonic mean [42]. It is given by the following 
formula:

For this paper, the value of k was taken to be 15.

Baseline for Evaluation
Simple dense vector search results were used as a baseline to 
measure the improvement brought by each retrieval system as 
measured by the evaluation metrics discussed above.

RESULTS AND DISCUSSIONS
The results of each retrieval mechanism for both datasets, as 
measured by mean reciprocal rank at k, precision at k, recall 
at k, and F1 score at k, with k=15, are presented in Figure 5, 
Figure 6, Figure 7, and Figure 8 respectively. Percentage 
improvements in each metric, when compared with simple 
dense vector search, is presented in table 4 and table 5 for 
TREC-COVID and  NFCorpus respectively.
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The heat maps for reciprocal ranks and F1 scores are presented 
in Figure 9, Figure 10, Figure 11 and Figure 12. These heat 
maps show that hybrid vectors with query expansion give the 
most accurate retrieval results. Moreover, the queries with 
few words show the most pronounced improvement when 
this combination is used. For example, for the following 
query in NFCorpus dataset:

“alternative medicine”,

The reciprocal rank improved from 0.2 to 1 and F1 score 
improved from 0.037 to 0.074 when hybrid vector search was 
used in combination with query expansion.

When considered against the baseline of simple dense vector 
search, these improvements can be attributed to the combined 
effect of following factors:

i). Query expansion improves the performance by adding 
more context through keywords and removing ambiguity 
from queries before they are vectorized. The chances for 
adding noise through keywords is minimal because modern 
LLMs are fully capable of understanding complex context 
and generating keywords based on that.

ii). Sparse vector retrieval system accounts for repeated 
keywords in the corpus and queries which enhances the 
retrieval quality.

Across the two datasets, TREC-COVID shows higher values 
of MRR and precision while NFCorpus shows higher values 
of recall and F1 scores. This can be attributed to the following 
factors:

i). TREC-COVID is a domain-specific dataset and contains 
consistent phrasing and jargon while NFCorpus contains 
diverse topics and inconsistent jargon which can confuse the 
retriever.

ii). TREC-COVID had more documents in our database 
(17,537) compared to NFCorpus (1,047) and therefore, carries 
more relevant documents per query, making it difficult to 
retrieve all relevant documents and therefore, resulting in 
lower values of recall while simultaneously increasing the 
value of precision.

iii). F1 Scores provide a harmonic mean between both 
precision and recall offering a balanced retrieval performance. 
The percentage improvement in F1 scores (155.56% for 
TREC-COVID vs 146.30% for NFCorpus), when compared 
with the baseline of simple dense vector search, is more 
pronounced in TREC-COVID because of its domain-
specificity (See table 4 and table 5).

iv). Smaller value for F1 score (0.046 for TREC-COVID vs 
0.133 for NFCorpus) for TREC-COVID can be explained by 
the low recall values because of the presence of a high number 
of relevant documents per query.

Overall, the results suggest that hybrid vector search with 
query expansion improves the performance across both small, 
large, general, and domain-specific datasets as the proposed 
system improved MRR, precision, recall and F1 scores for 
both datasets when compared with the benchmark of simple 
dense vector search.

 Dense vector
 w i t h
keywords

 H y b r i d
vectors

 H y b r i d
 vectors with
keywords

MRR@k 8.99 65.79 65.35

P@k 47.83 106.16 127.54

R@k 55.56 144.44 166.67

k@F1 50 127.78 155.56

Table 4: Percentage improvement through each retrieval 
system in TREC-COVID

 Dense vector
with keywords

 H y b r i d
vectors

 H y b r i d
 vectors with
keywords

MRR@k 97.18 172.32 236.16

P@k 34.78 122.83 151.09

Rl@k 36.36 156.06 213.64

k@F1 40.74 107.41 146.30

Table 5: Percentage improvement through each retrieval 
system in NFCorpus

Figure 5: MRR@k with different retrieval strategies
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Figure 6: P@k with different retrieval strategies

Figure 7: R@k with different retrieval strategies

Figure 8: F1@k with different retrieval strategies

Figure 9: Heat map for reciprocal ranks @k for each query of 
TREC-COVID

Figure 10: F1@k Scores heat map for each query of TREC-
COVID

Figure 11: Heat map for reciprocal ranks @k for each query of 
NFCorpus

Figure 12: F1@k heat map for each query of NFCorpus

CONCLUSIONS
In the light of this study, it is found that hybrid vector search 
with query expansion using an LLM like OpenAI’s GPT-4o 
mini can be used to improve the medical information retrieval 
process significantly and cost-effectively. It is also found that, 
when compared with plain dense vector search, dense vector 
search with query expansion, and hybrid vector search, this 
approach is the most efficient.

This study is significant because the proposed framework can 
be applied to other practical applications easily.
In the future, this study can be extended by applying this 
method using knowledge graphs as many real-world 
applications involve medical documents with complex 
relationships to each other.
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