

Secure File Storage using Infrastructure of Encrypted

Distributed Servers
Afifah Amjad1, Ayesha Ali2, Ayan Ahmar3, Anas Ahmed4, Abdul Rehman5, Zeeshan Saleem Khan6,

Muhammad Wasim7, Lubaid Ahmed8

Abstract: In today's digital age, data security has become

a prime concern for individuals and organizations that

rely on distributed systems for processing and storage.

To overcome these issues, this research paper aims to

address a new approach to data security, based on a

distributed system that processes data in parallel. The

purpose is to enhance the reliability of file storage and

the security of the system and protect data from

unauthorized access and data loss. Ensuring efficient

access and retrieval of files, the system combines the two

techniques; i.e., distributed storage and cryptographic

techniques. The security of the system is ensured in a

way that intruders cannot access the data until have

access to all servers and encrypted keys. The proposed

system operates as follows: when a user uploads a file, it

breaks the file into different chunks, further, these

chunks get encrypted. The key for each segment gets

stored in the database. The segments will be stored on

storage servers randomly. The record of the storage

servers; that is where the data is stored is also

maintained. When a user wants to retrieve a file, all

segments from different servers compile to make up a

single file, ensuring that the file cannot be retrieved until

all of the segments have merged.

Keywords: Data Segmentation, Encryption and

Decryption, Distributed Systems, Parallel Processing,

Vulnerabilities.

INTRODUCTION

With the rise of digitalization, the dependency on technology

grows. Therefore, cyber security has become a major

concern. The rising number of cyber-attacks highlights the

critical need to protect data security and integrity. The

database management systems are at risk by threats of SQL

injection, insider threats, and denial-of-service attacks [1].

Moreover cyber security in aviation industry needs

continuous collaboration, information sharing to address

emerging threats [2]. These attacks can be carried out during

file transmission as well. Transfer of file with large data size

persists great challenges [3].

1-2-3-4-5-6-7-8 Department of Computer Science, Usman Institute of

Technology

Karachi
Country: Pakistan

Email: * lahmed@uit.edu

At present, the most pressing problem is ensuring data security

and integrity. In order to guard against cyber-attacks, strong

encryption which provides high security of data should be

implemented. An alternative security option that can be used to

put data from ransom attack these days is by maintaining offline

backup. Users shall, however, download files and be responsible

for the safety of files on local storage. The more recent method

to secure data is that before data goes onto the server, it is

encrypted using AES (Advanced Encryption Standard) algorithm

[4]. The same algorithm is used for the decryption of data. The

principal goal of cryptography is to ensure that stored data is

secure and kept away from cyber-attacks and any illegal

activities.

Data partitioning eases secure storage and retrieval of data.

Data segregation creates more flexible accessibility and

lower costs for data storage. Another concept important for

security is through dynamic operations, which secures the

data at the time of storage on the server via encryption and

decryption schemes. Assurance of data security in the

provided spaces is performed by keeping and processing the

data on same set of servers. Traditional security facilities

such as firewalls and infiltration detection systems, no

longer can guarantee security against cyber-attacks. For this

reason, new and strong security facilities become mandatory.

This paper uses the well-developed concept of data

segmentation [5]. Data segmentation is done by dividing

large data into smaller chunks. These chunks are more

manageable. This helps organizations to handle each chunk

separately in a secure manner. This approach is particularly

valuable in data management; as it helps in management of

data into different servers in turns significantly improve the

performance of the system. Data protection can also be

maintained by dividing the data into the isolated segment.

Organizations can apply safety measures on specific data

chunks. If the specific data segment is compromised, the risk

for other segments is very low. In addition, division is an

effective strategy to meet regulatory requirements, such as

general data protection regulation (GDPR) [6]. Sensitive

information such as personal and financial is handled with a

proper security level of safety. Data protection can be

achieved by combining strategic data division and strong

secure protocol. The purpose of this research paper is to

develop a system that increases data security through strong

encryption techniques on data segments and effective

management of secured data chunks on distributed parallel

servers.

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 38

mailto:sarmad.shams@lumhs.edu.pk

BACKGROUND RESEARCH

Data is an important aspect of this modern world. Protecting

it against both external and internal threats is a challenging

task. Understanding the significance of data security is

important because data security refers to a set of measures

and guidelines for protecting sensitive information [6]. Data

security protects data from unauthorized access and attacks.

This proposed system uses the concept of data segmentation

and encryption. The proposed work allows users to upload

their important files or data on the web application server

that used local storage of machines for storing files and data.

For uploading or getting access to the files, users are

required to log into the application. The user can upload,

delete, and download files. This web application prioritizes

users’ data security by employing a segmentation process

and encrypting individual file segments. These encrypted

segments are then distributed and uploaded onto different

servers.

2.1 Encryption and Decryption

Cryptography is primarily concerned with ensuring the

security of users’ data. It aims to achieve several goals [7].

The primary goal of cryptography is data integrity. It ensures

that data remain secure and unaltered, is kept safe from

access by unauthorized parties, and is only accessible to

parties with permission. Considering all objectives,

cryptography addresses the challenges of data authenticity,

integrity, and confidentiality. Information can be transmitted

or sent using either an asymmetric or symmetric encryption

algorithm [7]. Lacking the protection data of the users will

directly threaten the privacy and security of users’ data. To

address privacy concerns, it is important to ensure proper

isolation of data from other users. Additionally, data must be

securely stored and protected [8].

The purpose of encryption is to maintain the confidentiality

of the data from unauthorized modifications [9]. Symmetric

and asymmetric encryptions are the two major types of

encryption. Both methods ensure the encryption process is

unique and cannot be easily replicated [9]. It is important to

emphasize the importance of keeping the key secure and

protected from unauthorized access. This is because the key

is used to encrypt and decrypt the message, and if it is

compromised, the message can be accessed by unauthorized

individuals [10]. Symmetric keys utilize the same key for

both the encryption and decryption processes. While in

asymmetric encryption two keys are generated public and

private keys. The private key is sent to the user secretly. The

private key is used for the decryption.

Figure 1: Symmetric Key Encryption

Figure 2: Asymmetric Key Encryption

2.2 Data Segmentation

Data Segmentation is the process of dividing data into relevant

segments. Data segmentation involves categorizing and

organizing information based on selected criteria, by breaking

the data into smaller and manageable units. In the proposed

system the segmentation technique is used for security purposes.

The segments of the file will be stored on different random

storage servers. This approach allows the simultaneous

processing of data, with distributed chunks residing on various

servers. Segmentation enhanced data security and faster

processing speeds. This technique is useful because processing a

big block is computationally slow rather than processing a small

chunk. The other benefit is it ensures security because collecting

all the chunks from different servers is more secure and

complicated in it.

When the file gets uploaded to the system it gets segmented

using the segmentation technique. Each of those segments gets

encrypted using AES. The segments then get uploaded on the

different servers randomly. Data partitioning is a technique used

in database systems and big data analysis frameworks to improve

performance by distributing data across multiple servers or nodes

[11]. This allows for more efficient querying and processing of

large amount of data.

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 39

The main objective of data partitioning is to enhance

scalability and reduce the load on any one server this

facilitate parallel processing and improves fault tolerance

[11]. One way to achieve a more balanced distribution of

data is by using techniques such as hash functions or range

keys for partitioning. However, this approach can result in

uneven partitions regarding data or computation, which may

adversely affect the performance and lead to failures [12].

2.2.1 Fixed Size Segmentation Complexity

For the Fixed-type segmentation, its time complexity usually

is O(n), where n is the number of chunks in which the file is split

up. This occurs because the algorithm reads through the entire

file as a whole, and it has to encrypt every chunk within about

the same period of time. The fixed size segmentation usually be

completed in linear time.

2.2.2 Variable Size Segmentation Complexity

For the Variable-type segmentation, time complexity is O(m*n),

in which m represents the number of random numbers generated

and n denotes the number of chunks that a file is split into. It

happens because it reads the entire file in one go and encrypt

every chunk in constant time and then generates random numbers

inside a loop.

Figure 3: System Diagram

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 40

METHODOLOGY

3.1 Objectives

The primary goal is to develop a web-based application that can

replicate various security-related services using encryption and

decryption techniques. The system involves a software

application that incorporates to ensure the protection of user

information. The proposed system consists of the following main

features.

• The system allows users to upload files.

• The user can access the system and download

 the file.

• The file can be removed from the system by users.

3.2 System Overview

The proposed system is based on local servers used for

storing encrypted segments. The proposed system is in the form

of a web application. The user or the admin can access the

application by login onto the portal. When users logged in to the

application user can upload or retrieve their files. When a user

uploads the file, the file gets split into segments using a

segmentation technique. These segments get encrypted and sent

to the random servers, and these random server IDs are stored in

the database to locate the segments at the time of retrieval.

Stored IDs are in the encrypted form in the database. And if the

user requests the retrieval of the file, the request goes to the

database where it gets the encrypted keys to locate the server and

decrypt the segments, then the request is sent to the servers

where all the segments get combined and the file gets

downloaded on the local storage.

Figure 4: Operational Diagram of the System

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 41

3.3 File Server Functionality

Data and information need to be shared between employees and

clients in any organization. Instead of using Universal Serial Bus

drives or emailing to transfer data between computers. People

can use a file server to serve as a central repository for their files.

This feature can make it easier for people who are in various

places to work together. A file server uses a computer as a server

to store data and make it available to other clients on the

network.

It serves as a central place to store data and share files. A server

can be either confined to a single local area network or

accessible through the Internet. To download uploaded saved

files, access to the main system is required. When a file is

selected for downloading, the system automatically retrieves the

necessary key from the main server [13].

3.4 Binary Large Object

A BLOB, or binary large object, is a format of data storage

within databases used for holding significant quantities of binary

data, including images, videos, audios, and other forms of

multimedia. Typically, BLOBs are stored as independent entities

within the database rather than being part of a table row and can

be accessed and manipulated using specialized database

functions or APIs. Some DBMS support BLOBs natively, while

others may require third-party software or plugins to manage

them. In application development, there are several ways to store

large objects. One approach is to use files in the file system,

another is to save them as BLOBs in a database, and a third

option is to combine both approaches [14]. In certain situations,

a hybrid method may prove to be the most effective solution.

However, it's worth noting that using MySQL tables for storage

can lead to limitations in terms of table size, with some

architecture only able to accommodate up to 8 terabytes per

table [15].

3.5 AES Algorithm

Advanced Encryption Standard (AES) algorithm uses the

symmetric technique [16]. The same key is used for encrypting

and decrypting of the data. AES operates on data blocks of 128

bits and uses key lengths of 128, 192, and 256 bits for

encryption and decryption [4]. The 128-bit data block is divided

into 16 bytes, which are then organized into a four-by-four array

referred to as the State. For each key, there are rounds defined;

128-bit keys use 10 rounds, 192-bit keys use 12 rounds and 256-

bit keys uses 10 rounds. Encryptions consist of the following

steps sub-bytes, shift rows, mix columns and round key.

The AES algorithm has undergone two modifications. These

modifications include changes made to 1) the key schedule

process and 2) the cypher round algorithm [17]. The decryption

is performed by utilizing the reverse of the encryption that

includes inverse shift rows, inverse substitute bytes, add round

key and then inverse mix columns [4, 17]. A problem that may

arise with the fixed-

key approach is the risk of key-specific implementation being

obtained and subsequently exploited in place of the actual key.

This could allow an unauthorized individual to encrypt or

decrypt any message for which the intended user has the

capability to do so [18].

AES has replaced the DES in 2001 with new and updated

features i.e., Block encryption implementation [19]. AES

algorithm is more efficient because of the variety of key

selection for encryption. AES allows you to choose in between

128, 192 or 256-bit keys, and make it stronger than the 56-bit

key of DES.

Table 1: AES 128 vs AES 192 vs AES 256

Key Length

(Bits)

Block Size

(Bits)
Rounds

AES 128 128 128 10

AES 192 192 128 12

AES 256 256 128 14

3.6 AES Working

The implementation of encryption algorithm is done using the

mode of Advanced Encryption Standard with Galois Counter

Mode (AES-GCM) [20]. AES-GCM is designed for higher

performance of encryption and decryption. The reason for

choosing GCM is to ensure both data authenticity and

confidentiality within the system.

The implementation of AES utilizes predefined lookup tables

[4]. Its primary functions include block cipher encryption with

AES and performing multiplication over the matrix field through

Galois Field Multiplication [19-21].

GCM serves as a mode of operation for AES that merges

confidentiality with integrity. It encrypts the plaintext and

generates an authentication tag, which can be used to confirm

the integrity of the data. GCM is especially advantageous for

real-time applications due to its ability to support efficient

parallelization and pipelining. The rapid implementation of the

GCM algorithm employs the traditional method of lookup tables

for multiplication in a finite field. In the AES-GCM

implementation, the key size is set at 128-bits, with the key size

varying based on the required level of security. 128-bit of key

length will cause the execution of 10 rounds. For each round all

the steps for encryption will be performed that will include

permutation and substitution.

AES performs encryption or decryption on a 128-bit block of

plaintext or cipher text by applying the same round

transformation multiple times, the number of which depends on

the key size [4]. In AES-GCM, the process of encryption and

decryption depends on the key length, the higher the key length

it will take the more time. The more the number of rounds

executed, the more time it will take to complete [20].

This method allows for a faster computation of the GCM

algorithm [20]. The problem can be divided into four sub-

problems, with each one containing four equations. In each sub

problem, the same method described above is applied to each

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 42

equation, to determine the most probable candidate for the 1

least significant bit of the lower-half key bytes and the 7 most

significant bits of the single upper-half key byte, the problem is

divided into smaller sub-problems, facilitating a more

straightforward solution [22].

RESULT

Table 2: Testing result of multiple files

File

Extension
Filename

File Size

(MB)

Host

Data

Uploading

Time (sec)

Deleting

Time

(sec)

Downloading

Time (sec)

Upload

Average

(sec)

Delete

Average

(sec)

Download

Average

(sec)

png

galaxy11.png 0.39 313 14 3 10

15.2 4.6 7.4

face.png 0.13 2331 21 5 7

forgotpass.png 0.08 332 11 5 5

skeleton.png 0.07 133 20 6 6

database.png 0.06 113 10 4 9

mp3

adelemusic.mp3 4.35 1133 37 14 15

27 10 55

testing.mp3 4.35 331 30 10 14

advacedFile.mp3 2.84 332 17 8 8

ed_sheeran.mp3 5.48 121 32 9 8

Taylorswift.mp3 4.89 322 19 9 10

zip

FDSC.zip 77.2 331 152 7 135

71.6 5.6 60.8

Frontend.zip 63.0 311 91 6 89

Backend.zip 28.5 133 38 4 32

MyProject.zip 38.4 331 62 4 40

Favicon_io.zip 0.18 3211 15 7 8

pptx

CS05_M2.pptx 2.21 313 26 1 6

15.4 2 10

Ppt_test.pptx 2.89 311 11 2 15

Ppt_test(1).pptx 2.89 133 8 2 12

M4_ppt.pptx 1.78 232 15 2 4

WNA_final.pptx 2.29 211 17 3 13

docx

WMS.docx 4.91 333 21 7 15

15.2 3.8 10.6

AK_assign_2.docx 2.67 333 18 3 11

AK_assign_4.docx 2.98 331 24 5 14

DIP_lab9.docx 0.3 111 9 3 7

Buglist.docx 0.1 3333 4 1 6

pdf

WMS_diag.pdf 1.11 111 19 1 15

17.6 3.4 25.4

Assignment1.pdf 0.99 333 16 7 39

CS457_assign.pdf 0.99 3333 14 3 12

Lab09_DIP.pdf 0.64 1111 21 2 34

AK_assign.pdf 0.89 3111 18 4 27

csv

Dummydata.csv 0.03 111 13 7 6

13.2 5.2 4.4

Stationdata.csv 0.18 1111 12 7 6

Dataset.csv 0.07 333 13 4 5

Station-data1.csv 0.03 111 12 6 3

Ts-test.csv 0.02 1111 16 2 2

txt

Test.txt 0.0001 113 5 2 1

13.2 3.6 3.4

groupMember.txt 0.0001 333 13 1 2

Test(1).txt 0.0001 3232 18 4 4

User_code.txt 0.0001 123 13 6 3

SQI_script.txt 0.0012 3333 17 5 7

exe

Tahometrx89.exe 5.35 121 33 13 24

47.4 16.6 20.4

VSCodeSetup.exe 90.97 333 87 19 48

Python3.11.3.exe 24.8 1111 58 26 14

EAppInstaller.exe 12.7 113 42 21 9

ChromeSetup.exe 1.35 331 17 4 7

jpg

Cover1.jpg 0.08 111 13 1 4

11 1 2.8

Cover4.jpg 0.08 111 12 1 3

ERD.jpg 0.06 333 14 1 2

ERD2.jpg 0.06 3333 9 1 3

Plag_report.jpg 0.04 1331 7 1 2

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 43

Table 2 shows the summary of test with different file

types and sizes. It shows the time that passed for

uploading, downloading, and deleting each file. File

sizes are shown in megabytes, while duration for all

these actions is expressed in seconds. Also, the average

values for uploading, downloading, and deleting each

file type are given. This data helps explain the

relationship between file sizes and the time required for

these operations in a more accessible way. From the

experimental data, a clear pattern emerges. The results

can be classified into three types depending on the file

size and its type.

For smaller file size (such as .txt and .csv) require

significantly less time for all operations, typically

completing uploads, downloads, and deletions in just a

few seconds. Medium-sized files (such as .pdf, .docx,

and .pptx) show moderate variations, with uploads

taking slightly longer compared to deletions and

downloads. Larger files (such as .zip, .mp3, .exe) take

considerably more time, particularly during the upload

process. Notably, .zip files had the highest upload

duration, often exceeding 60 seconds, while .exe files

exhibited the most variation in time consumption. These

results demonstrate a direct relationship between file

size and the time taken for each operation. Uploading is

consistently the most time-intensive process, followed

by downloading, while deletion remains the quickest

across all file types. These insights highlight the

importance of optimizing file transfer processes,

especially when handling large files.

Larger file sizes generally take longer to upload, with a

steep increase for ZIP files, where larger files require

more time to download. Deletion times are less

dependent on file size, except for MP3 files, which take

significantly longer.

Figure 5: Showing File type vs file operation time

ZIP and EXE files requiring the most time for uploads

and downloads. This is likely due to file integrity

checks, encryption, and network latency. |It can be seen

from Figure 5 that downloading is generally faster than uploading,

especially for compressed and multimedia files, as they benefit

from efficient retrieval mechanisms.

Deletion is the quickest operation, with most files being removed

within a few seconds.

CONCLUSION

To enhance data security during transmission and in storage a

valuable tool is designed. This newly designed system will protect

data from cyber-attacks and ransom ware. It enhances security in

three steps first by segmenting the data, and then encrypting the

chunks and then saving it on distributed servers. The other features

like user registration, file uploads, downloads, deletion can be

performed with ease. Users can access their data flexibly and

securely. This system makes a significant impact in the field of data

security, providing strong data protection solutions to thwart cyber

threats and maintain security, and authenticity of user.

The proposed system will share data within an organization in a

dependable and effective way while giving priority to security and

performance. In a nutshell, data partitioning can be used to enhance

scalability by splitting data into smaller, manageable segments,

which helps in lightening the burden on individual servers.

Encryption is the most vital application in securing user data for file

sharing and database management applications. With state of the art

AES algorithm, data can be protected from theft by unauthorized

persons.

REFERENCE

[1] Farooq, M., Younas, R. M. F., Qureshi, J. N., Haider, A.,

 Nasim, F., & Khan, H. (2025). Cyber security Risks in DBMS:

 Strategies to Mitigate Data Security Threats: A Systematic

 Review. Spectrum of engineering sciences, 3(1), 268-290.

[2] Eleimat, M., & Őszi, A. (2025). Cybersecurity in Aviation:

 Exploring the Significance, Applications, and Challenges of

 Cybersecurity in the Aviation Sector. Periodica Polytechnica

 Transportation Engineering.

[3] Yang, Y., He, H., Feng, Z., Chen, F., & Yuan, Y. (2025).

 Cloud-Based Privacy-Preserving Medical Images Storage

 Scheme with Low Consumption. IEEE Transactions on

 Multimedia.

[4] Rijmen, V., & Daemen, J. (2001). Advanced

 encryption standard. Proceedings of federal I

 nformation processing standards publications, national

 institute of standards and technology, 19, 22.

[5] Gray, J., & Reuter, A. (1992). Transaction processing:

 concepts and techniques. Elsevier.

[6] GDPR, G. (2016). General data protection regulation.

 Regulation (EU), 679.

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 44

[7] Delfs, H., Knebl, H., & Knebl, H. (2002).

 Introduction to cryptography (Vol. 2). Heidelberg:

 Springer.

[8] Agrawal, E., & Pal, P. R. (2017). A secure and fast

 approach for encryption and decryption of message

 communication. Int. J. Eng. Sci, 11481.

[9] Rogaway, P. (2004, February). Nonce-based

 symmetric encryption. In International workshop

 on fast software encryption (pp. 348-358). Berlin,

 Heidelberg: Springer Berlin Heidelberg.

[10] Bellare, M., & Tackmann, B. (2016). Nonce-based

 cryptography: retaining security when randomness

 fails. In Advances in Cryptology–EUROCRYPT

 2016: 35th Annual International Conference on the

 Theory and Applications of Cryptographic

 Techniques, Vienna, Austria, May 8-12, 2016,

 Proceedings, Part I 35 (pp. 729-757). Springer

 Berlin Heidelberg.

[11] Mahmud, M. S., Huang, J. Z., Salloum, S., Emara,

 T. Z., & Sadatdiynov, K. (2020). A survey of data

 partitioning and sampling methods to support big

 data analysis. Big Data Mining and Analytics, 3(2),

 85-101.

[12] Ke, Q., Prabhakaran, V., Xie, Y., Yu, Y., Wu, J., &

 Yang, J. (2016). U.S. Patent No. 9,235,396.

 Washington, DC: U.S. Patent and Trademark

 Office.

[13] Nafi, K. W., Kar, T. S., Hoque, S. A., & Hashem,

 M. M. A. (2013). A newer user authentication, file

 encryption and distributed server based cloud

 computing security architecture. arXiv preprint

 arXiv:1303.0598.

[14] Sears, R., Van Ingen, C., & Gray, J. (2007). To

 blob or not to blob: Large object storage in a

 database or a filesystem?. arXiv preprint

 cs/0701168.

[15] MySQL, A. B. (2005). MySQL: the world's most

 popular open source database. http://www. mysql.

 com/.

[16] Singh, G. (2013). A study of encryption algorithms

 (RSA, DES, 3DES and AES) for information

 security. International Journal of Computer

 Applications, 67(19).

[17] De Los Reyes, E. M., Sison, A. M., & Medina, R.

 (2019). Modified AES cipher round and key

 schedule. Indonesian Journal of Electrical

 Engineering and Informatics (IJEEI), 7(1), 29-36.

[18] Chow, S., Eisen, P., Johnson, H., & Van Oorschot, P. C.

 (2003). White-box cryptography and an AES implementation.

 In Selected Areas in Cryptography: 9th Annual International

 Workshop, SAC 2002 St. John’s, Newfoundland, Canada,

 August 15–16, 2002 Revised Papers 9 (pp. 250-270). Springer

 Berlin Heidelberg.

[19] Akkar, M. L., & Giraud, C. (2001). An implementation of DES

 and AES, secure against some attacks. In Cryptographic

 Hardware and Embedded Systems—CHES 2001: Third

 International Workshop Paris, France, May 14–16, 2001

 Proceedings 3 (pp. 309-318). Springer Berlin Heidelberg.

[20] Ahmad, N., Wei, L. M., & Jabbar, M. H. (2018, June).

 Advanced Encryption Standard with Galois Counter Mode

 using Field Programmable Gate Array. In Journal of Physics:

 Conference Series (Vol. 1019, No. 1, p. 012008). IOP

 Publishing.

[21] Käsper, E., & Schwabe, P. (2009, September). Faster and

 timing-attack resistant AES-GCM. In International Workshop

 on Cryptographic Hardware and Embedded Systems (pp. 1-17).

 Berlin, Heidelberg: Springer Berlin Heidelberg.

[22] Lapid, B., & Wool, A. (2019). Cache-attacks on the ARM

 TrustZone implementations of AES-256 and AES-256-GCM

 via GPU-based analysis. In Selected Areas in Cryptography–

 SAC 2018: 25th International Conference, Calgary, AB,

 Canada, August 15–17, 2018, Revised Selected Papers 25 (pp.

 235-256). Springer International Publishing.

Journal of Information & Communication Technology - JICT Vol. 18 Issue. 2 45

