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Abstract: The process of interpreting sentences based on 
the movements of a speaker’s lips is referred to as lip 
reading. Traditionally, this task has been approached in 
two stages using conventional methods: first, by generating 
or learning audio-visual features, and second, by making 
predictions. While contemporary deep lip reading 
techniques benefit from end-to-end trainable datasets, 
much of the existing research on these models tends to 
concentrate solely on word classification rather than 
predicting sequences at the sentence level. Long sentences 
may be lip-read by humans, as studies have shown. This 
study emphasizes the value of temporal considerations by 
highlighting the components that are important for 
capturing temporal context in instances when 
communication channels are unclear. In the paper, a lip-
reading system for viseme prediction is shown. The system 
uses a Convolutional Neural Network (CNN) with a 
recurrent network, spatiotemporal convolutions, and the 
connectionist temporal classification loss. A variable-
length series of video frames is efficiently mapped to text 
using an end-to-end training procedure. Both visual and 
auditory qualities are evaluated using the CNN 
architecture. The CNN model outperforms trained human 
lip readers and achieves accuracies of 72.8% CER and 
80.8% WER (unseen speakers with audio), whereas 46.2% 
CER and 56.6% WER (unseen speakers without audio), 
which are reasonable accuracies on the GRID corpus by 
splitting test at the level of the sentences.

Keywords: lip, reading, model, visemes, accuracy, 
convolutional neural network

INTRODUCTION:
While deep learning techniques, like Convolutional Neural 
Networks (CNNs), are excellent at deriving meaning from 
heterogeneous or ambiguous data, they are also very good at 
identifying complex patterns and trends that are beyond the 
capacity of human or other computer systems to recognize. A 
CNN model can be pondered an expert in the particular data 
group it was trained to observe after training [1].

Without contextual information, deciphering lip movements 
poses a considerable challenge for humans. Lip reading 
involves not only observing the lips but also discerning subtle 
movements of the tongue and, at times, the teeth. Many lip-
reading cues remain latent and are difficult to interpret within 
a given context. CNN-driven Lip Reading, a direct method 
for speech recognition, stands out as an advanced technology 
frequently applied in this domain. We introduce a lip-reading 
approach that takes into account both lip shape and the 
intensity of the mouth region. Tracking and parameterizing 
the inner and outer boundaries of the lips in a series of images 
yield shape information. Based on grey-level data, a principal 
component analysis model is used to extract intensity details 
[2].

In contrast to earlier methods, our approach involves the 
concurrent deformation of both the intensity area and the 
shape model to guarantee the replication of identical object 
features following non-rigid deformation of the lips. We 
present recognition methods for speaker-independent 
applications utilizing these attributes. Initial findings suggest 
that combining shape and intensity information may yield 
enhanced performance, while comparable results can be 
achieved by employing either one of them individually [3].

1.1. Significance of Speech Recognition:
The discipline of speech recognition is identified as the major 
compelling domains of computer science. It is essential that 
computers be able to comprehend both speech and gestures. 
The difficulty arises in recognizing diverse and complex 
terms. Convolutional Neural Networks (CNNs), designed 
comprises of the functioning of the human brain, prove 
effective in various pattern recognition tasks and demonstrate 
exceptional learning capabilities [4].

CNNs may combine several heterogeneous input features that 
don’t have to be considered independent to identify the best 
combination of these characteristics for the task of 
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classification. This research aims to use CNN’s ability to 
increase speech recognition accuracy at the sentence level 
using visual features [5].

1.2. Process of Lip-Reading:
Lip reading is the technique of extracting visual traits of 
speech from a person’s lips. Though it has also been shown 
that information regarding the shape of the tongue and teeth 
may also transmit substantial speech cues, the curves of the 
inner and outer lips contain the most essential visual speech 
signals. Fricatives feature easily distinguishable articulation 
sites, such as upper teeth on the lower lip, interdentally 
(tongue behind front teeth), and alveolar (tongue contacting 
gum ridge). Wrinkles and lip protrusion may provide extra 
information during speaking [6]. Figure 1 below depicts the 
human mouth with arrows indicating the English articulation 
points.

Figure 1. Human mouth representation with articulation points

In English, fricatives (see Table 1) are produced by slightly 
inhibiting airflow via the mouth. They are distinguished by 
phonological features: sibilance, point of articulation, and 
voicing. The articulation points can be either voiced or 
voiceless. Fricatives are identified by a variety of cues [7].

Table 1. List of fricatives in English language w.r.t point of 
articulation

 Point of
Articulation

Voiceless Voiced

IPA Examples IPA Examples

Labiodental

 Interdental /
Dental

Alveolar

/f/

/θ/

/s/

”fro”, ”fat”

”thick”, ”think”

”suit”, ”sun”

/v/

/ð/

/z/

”vine”, ”van”

”the”, ”this”

”zit”, ”zoom”

Lip reading techniques may be divided into two categories:

1.-based techniques. 
2. Model-based techniques.

      Grey-level data from an image area including the lips is 
utilized for speech parameters in image-based systems, either 
directly or after some processing. This preserves the majority 
of the visual data; nevertheless, the identification algorithm 
still needs to separate audio recordings from language and 
illuminating variability [8].

Lips are frequently represented in model-based systems by 
geometric measurements such as the height or width of the 
outer or inner lip limits, or by a parametric contour model that 
illustrates the lip borders. The characteristics that were 
recovered are low-dimensional and insensitive to light. 
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Model-based systems depend on the user describing 
characteristics associated with speech. Because of this, the 
definition could not include all speech-related details and 
characteristics that are challenging to illustrate, including the 
exposure of the tongue and teeth [9, 10]. Hence, the prime 
objective of this work is to automate lip reading for the 
purpose of predicting visemes. This innovation possesses 
major value for numerous applications such as enhanced 
hearing aids, biometric verification, security systems, discreet 
dictation in public areas, speech recognition in loud 
circumstances, and the processing of silent movies, among 
others. The remaining portion of this article is divided into 
various sections as follows: Section 2 provides a review of 
related works on automatic lip reading, while Section 3 delves 
into the detailed explanation of the CNN architecture. The 
processes of data pre-processing and methodology are 
elucidated in Section 4. Section 5 comprises of presenting and 
assessing the outcomes along with a comprehensive 
discussion. Finally, Section 6 encapsulates our concluding 
remarks.

LITERATURE REVIEW
Many techniques for reconstructing speech from silent videos 
have recently been investigated by researchers. For machine 
lip-reading, it is essential to extract spatiotemporal information 
from movies, which is difficult because both location and 
motion are important. The goal of modern deep learning 
techniques is to fully capture these properties. Nevertheless, 
most previous research only addresses word-level sequence 
prediction, not sentence-level sequence prediction. As a 
result, we suggested an automatic lip-reading system that 
makes use of visual characteristics to scan a user’s lip 
movements and make an educated guess as to the visemes the 
user is expressing. This section’s linked works will assist in 
identifying any research gaps using current methods.

An automated lipreading system employs a recurrent network 
of spatiotemporal convolutions. An end-to-end model with 
the connectionist temporal classification loss has been 
developed, depending upon deep learning convolutional 
neural networks. This loss is used to translate a text sequence 
from a variable-length video frame series. Employing 
characteristics extracted from films, the efficacy of the trained 
lip-reading method in sentence prediction was examined. The 
study discovered that sufficient information about the speaker 
was captured by the facial landmark representation. 
Nevertheless, the important aspects of lip-reading that might 
be present in films are not captured by this interpretation [11].

The principal objective of a study is to form a network 
architecture for data recognition, processing, and acquisition 
in lip-reading. A research was conducted using an algorithm 
for lip reading that was both accurate and adaptive. To extract 
and segment the mouth region, a planned hybrid model with a 
newly proposed edge centered on a proposed filter was first 

implemented. Next, convolutional neural networks (CNN) 
and bi-directional gated recurrent units (Bi-GRU) were used 
to train the spatiotemporal model. In testing algorithms, an 
accuracy of 90.38% has been achieved altogether. The 
system’s performance demonstrated lip segments by applying 
lip segmentation as input to the proposed Spatiotemporal 
model [12].

This report extensively examines temporal models and data 
augmentation techniques applied to the LRW dataset. It 
illustrates how the synergistic application of optimal 
augmentations and training approaches can yield cutting-edge 
performance. The study reveals that among various 
augmentations, time masking emerges as the most crucial, 
followed by mixup. Additionally, the study identifies Densely-
Connected Temporal Convolutional Networks (DC-TCN) as 
the most efficient temporal model for lip-reading isolated 
words. Integration of these methods results in an impressive 
93.4% classification accuracy, surpassing the current state-of-
the-art LRW dataset results by 4.6%. Further enhancements to 
a 94.1% accuracy can be achieved through pre-training on 
new datasets. An error analysis of diverse training methods 
highlights performance improvements, particularly in 
accurately classifying challenging words [13].

Lip reading involves converting video data into textual 
information. The proposed technique comprises a test dataset, 
image frame analysis, and the generation of text output based 
on detected words. The test dataset was constructed by 
integrating various facial expressions associated with different 
words. The system consists of four key components: test data, 
data preprocessing, word identification, and output generation. 
In the test data component, raw video clips serve as input, 
which are then divided into frames and preprocessed during 
the data preprocessing step. These processed frames are 
compared with training data during the word identification 
stage. Lip-Interact illustrates how the camera functions as a 
sensor, identifying lip gestures by capturing every movement 
in the video. Notably, there is a time gap between the capture 
and utilization of each image. It’s important to note that this 
technique may encounter challenges and potential failures for 
various reasons. The lip gesture for comparable phrases is one 
of the most typical issues researchers have encountered. It 
might be difficult to tell what the speaker is attempting to say 
vs what the system truly recognizes. However, employing 
machine learning makes it feasible to decrease the error 
associated with this problem with sufficient training and 
sample data. The accuracy achieved in this study was found to 
be 90% [14].

In visual speech recognition (VSR), speech is synthesized by 
analyzing the motions of the tongue and teeth using visual 
input. Recently, deep learning has shown to do exceptionally 
well in VSR, surpassing lip-readers on benchmark datasets. 
Nonetheless, a few problems persist with VSR systems. The 
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distinction between homophones, or words that sound similar, 
is a significant issue that contributes to word ambiguity. 
Words like ”a,” ”an,” ”eight,” and ”bin” require more visual 
information to be learned than words with lengths of less than 
0.02 seconds, which is another technical flaw in standard 
VSR systems. This study presents a novel lip-reading 
architecture consisting of three independent convolutional 
neural networks (CNNs): a multi-layer feature fusion CNN, a 
three-dimensional CNN, and a densely linked CNN. A two-
layer bi-directional gated recurrent unit is placed after the 
three CNNs. To train the whole network, connectionist 
temporal classification was employed. For the unseen-speaker 
dataset, the suggested architecture reduced the baseline 
model’s character and word mistake rates by 5.681% and 
11.282%), respectively, based on accepted automatic speech 
recognition assessment standards. However, automated 
speech recognition using just VSR remains difficult since 
speech combines both visual and aural information [15].

Densely Connected Temporal Convolutional Network (DC-
TCN) is used for isolated word lip-reading. Temporal 
Convolutional Networks (TCN) have shown excellent results 
recently in a range of vision tasks; nevertheless, they still lack 
the receptive fields required to capture the complex temporal 
dynamics observed in lip-reading scenarios. Dense 
connections are added to the network to overcome this 
obstacle and better capture temporal information. Furthermore, 
the Squeeze-and-Excitation block, a basic attention strategy, 
has improved the model’s classification performance. The 
DC-TCN methodology achieved accuracies of 88.36% on the 
Lip Reading in the Wild (LRW) dataset and 43.65% on the 
LRW-1000 dataset, respectively, outperforming all traditional 
methodologies, according to the study’s findings [16].

The goal of the study is to help those who are hard of hearing 
comprehend interaction without the need for specialized 
instruction or assistance from others. The study concentrated 
on speech recognition difficulties such as homophones and 
co-articulation. The problem can be solved with the help of 
deep learning with long-short-term memory, and the procedure 
can be enhanced by combining it with facial feature extraction. 
Depth-sensing and color imaging work together to further 
increase the classifier’s accuracy. The core of the system was 
built in Python using the TensorFlow and Keras libraries. The 
photos were processed using OpenCV. 3000 examples from 
the MIRACL-VC1 dataset have been utilized. According to 
the findings, the LSTM method produced results with an 
accuracy of 85% [17].

To simulate real environments, a two-stage corrector using 
Generative Adversarial Networks and a lip deflection 
classifier using Convolutional Neural Networks were created. 
A challenging dataset with many speakers to simulate a 
dynamic environment and substantial lip deflection angles 
was presented. These models are used to correct lip deflection 

and improve recognition accuracy. The proposed network is 
successful in tackling significant lip deflection angles in real-
world settings, as evidenced by absolute improvements of 
18.3% and 7.4% in compared to scenarios without 
preprocessing and confined to face alignment alone [18].

A lip-reading system based on neural networks has been 
developed to predict sentences from silent conversations in 
movies, encompassing a diverse vocabulary. This system 
exhibits resilience to fluctuations in lighting conditions, 
operates without reliance on a specific lexicon, and relies 
solely on visual data represented by visemes, capturing a 
limited set of distinct lip movements. The performance 
criterion of the model has been validated using the crucial 
BBC Lip Reading Sentences 2 (LRS2) benchmark dataset, 
demonstrating a notable 15% enhancement compared to its 
previous performance. Experimental findings indicate that 
the proposed model maintains its effectiveness even when 
exposed to variations in illumination during movie sequences. 
Notably, the classification accuracy for visemes in this 
approach surpassed 95%, but the conversion process resulted 
in a substantial reduction in the classification accuracy of 
words, as revealed by the results [19].

The issue of automatic face recognition for individuals 
engaged in speaking activities was addressed in this study. 
The investigation aimed to determine whether incorporating 
additional signals related to articulation, alongside facial 
features, could enhance the precision of emotion identification 
when integrated into a deep neural network (DNN) model. To 
discern the facial expressions of speaking participants, a 
spatiotemporal Convolutional Neural Network (CNN) and a 
Gated Recurrent Unit (GRU) cell Recurrent Neural Network 
(RNN) were developed utilizing the RAVDESS dataset. 
Initially, these models were trained solely on facial features, 
and subsequently on signals related to articulation extracted 
from a lip-reading model, as well as on a combination of 
facial features and varying numbers of consecutive frames 
included in the input. The study findings reveal that integrating 
articulation features into DNNs enhances classification 
accuracy by up to 12%, with a more pronounced improvement 
observed when more consecutive frames are incorporated 
into the model’s input [20].

CONVOLUTIONAL NEURAL NETWORK 
ARCHITECTURE:

Convolutional neural networks, sometimes described as 
CNNs or ConvNets, are a particular kind of neural networks 
that are principally good at processing input that has a grid-
like structure, like an image. A digital picture is a grid-like 
arrangement of pixels that functions as a binary illustration of 
visual data. As seen in Figure 2 [15], each pixel is given a 
pixel value that represents its brightness as well as color.
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Figure 2. Image representation using a grid of pixels

When the human brain comes into contact with a picture, it 
begins to investigate a large amount of data. Each neuron in 
this complex neural network has a distinct receptive field that 
links to other neurons to form a total receptive field that 
encompasses the whole visual field. Similar to the human 
visual system, each neuron in a Convolutional Neural 
Network (CNN) only processes data inside its assigned 
receptive area. The network’s first layers identify basic 
components like lines and curves before moving on to more 
intricate aspects like faces and objects. Computers can be 
given the capacity to see by using a CNN [1].

Figure 3. CNN architecture representation

3.1. Convolution Layer

The cornerstone of CNNs is the convolution layer, which 
shoulders the basic computational load within the network. 
This layer performs a dot product operation between two 
matrices: one is the kernel, containing adjustable parameters, 
and the other represents the limited region of the receptive 
field. Although the kernel is more detailed than an image, it is 
spatially smaller. To clarify, in the context of an image with 
three (RGB) channels, the kernel’s height and width are 
spatially compact, while its depth extends to encompass all 
three channels [21].

 The convolution layer, which bears the majority of the 
network’s computational load, is the foundation of CNNs. 
This layer carries out a dot product operation between two 
matrices, one of which represents the restricted area of the 
receptive field and the other is the kernel with modifiable 

parameters. The kernel is smaller in space than an image but 
has greater detail. To be more precise, the kernel’s depth spans 
all three channels in the context of an image with three (RGB) 
channels, although its height and breadth are spatially compact 
[21].

Figure 4. Convolution process representation

3.2. Pooling Layer
The pooling layer substitutes the network’s output at specific 
periods by generating a summary statistic from the surrounding 
outputs. This reduces the spatial dimension of the 
representation, hence reducing the computational load and 
required weights. The pooling technique is applied 
independently to each model slice [23].

Pooling processes include a weighted average based on the 
distance to the center pixel, the rectangular neighborhood 
standard, and the rectangular neighborhood L2 norm. 
However, the most common method is max pooling, which 
finds the neighborhood’s largest value. The following formula 
may be used to calculate the output volume’s dimensions if 
there is an activation map with dimensions W x W x D, a 
spatially sized pooling kernel F, and a stride S.

As a result, the output volume will be Wout x Wout x D. 
Because of certain translation invariance, pooling ensures that 
an item is always discernible no matter where it is in the 
frames (see Figure 5) [24].
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Figure 5. Pooling process representation

3.3. Fully Connected Layer
Every neuron in a layer of a conventional Fully Connected 
Neural Network (FCNN) is closely connected to every other 
neuron in the layer above and below it. This type of connection 
enables calculation using the standard method of matrix 
multiplication together with bias inclusion. As shown in 
Figure 6 [25], the Fully Connected (FC) layer is essential for 
enabling the mapping of representations between the input 
and output.

Figure 6. Predicted number by output neurons using softmax.

DATA PRE-PROCESSING AND METHODOLOGY:
With just the speaker’s lip movements and visemes known, as 
well as the possibility of a mistake or misclassification in the 
input viseme sequence, the aim of this study is to predict an 
expected phrase that a subject is likely to say given a series of 
visemes. Many lip-reading datasets exist, however, the 
majority either contain one word or are far too short of 
sentences [32]. The GRID corpus comprises 34 speakers’ 
audio and video records, each of whom produced 1000 
utterances and 34000 visemes. While whole sentences are 
included in the GRID corpus, we will only address the simpler 
case of single-word prediction. This work uses temporal 
context to predict sequences, which improves accuracy [27].

The GRID corpus is used here to evaluate this study as it is 
sentence-level and has the most data. Due to the absence of 
speaker 21’s movies and the corruption or futility of a few 
others, there are just 32746 working videos. Three male and 
three female speakers’ data are awaited for analysis, with 
70% of the data being used for training with 22922 films and 
30% being used for testing with 9824 movies (unseen 
speakers with and without audio) that haven’t been used in 
the literature before [27]. The dataset has been split into 
separate video clips for the pronunciation of each number, 
with American English serving as the baseline. 68 landmarks 
were used in the analysis of the movies using the DLib face 
detector, the online Kalman filter, and the iBugfacelandmark 
predictor (refer to Figure 7). Thanks to these landmarks, we 
can extract a mouth-centered crop with a size of 100×50 
pixels every frame using an affine transformation. We 
equalize the RGB channels throughout the training set in 
order to attain zero and one unit variance [15, 28].

Using a DLib face detector, the targeted face and mouth are 
identified at the pre-processing data stage. When creating the 
bounding box for the lips, the algorithm generates the (x, y) 
coordinates of the diagonal edges. To mitigate overfitting, we 
introduce essential modifications to the dataset. Initially, 
standard and horizontally mirrored image sequences are 
employed for the initial training. Consistent pre-processing 
and augmentation procedures, as outlined in the GRID dataset 
[11], are applied to train and test all models.

Figure 7. 68 Landmarks representation identified with DLib’s face 
detector

The CNN approach predicts the speaker’s vocabulary based 
on a video input. The model will forecast data from the grid 
dataset since it was trained on it. The model consists of two 
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Figure 8. The representational flow of lip-reading process

RESULTS AND DISCUSSION:
The dataset employed was the GRID corpus. Included are 
videos of the 34 speakers—both male and female—uttering 
1,000 phrases. The grammatical structure uses the following: 
command (4) + color (4) + preposition (4) + letter (25), digit 
(0) + adverb (4). The number denotes the number of word 
options available in each of the six-word categories. 64000 
possible phrases may be generated by combining the following 
categories: {bin, lay, place, set}, {blue, green, red, white}, 
{at, by, in, with}, {A,...,Z}\{W}, {0,…,9}, and {again, now, 
please, soon}. We compute the word error rate (WER) and 
character error

Bi-GRUs layers, three spatiotemporal convolution layers, 
channel-wise dropout layers, spatial max-pooling layers, and 
softmax activation functions and rectified linear unit (ReLU) 
activation functions for sequence classification. In order to 
evaluate the character error rate (CER) and word error rate 
(WER) scores using CTC beam search, all models were built 
with Keras with a TensorFlow backend and TensorFlow-CTC 
decoder [33]. The Rectified Linear Unit (ReLU) performs the 
computation of the function f (k) = max (0, k). In other words, 
there is a zero threshold at which the activation is present. The 
following is how the CNN steps are used:

→ [CONV 1] → [BATCH NORM] → [ReLU] → [POOL 1]
→ [CONV 2] → [BATCH NORM] → [ReLU] → [POOL 2]
→ [FC LAYER] → [OUTPUT]

One stride, two padding, and a 5 x 5 spatial kernel are 
employed for each of the two convolutional layers. The max 
pool operation is performed with a kernel size of 2, stride 2, 
and zero padding for both pooling levels. ZeroPadding3D 
layer is utilized to pad zeros in three dimensions. The Batch 
Normalization layer equalizes the input and prevents improper 
weight matrix initialization by explicitly compelling the 
network to adopt a Gaussian unit distribution [33, 34]. The 
main procedure for lip-reading using CNN in this work is 
depicted in Figure 8.
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deletions, insertions, and substitutions necessary to convert 
the amount of words (or characters) in the ground truth 
divided by the forecast into the ground truth. When the 
predicted and actual sentences have the same number of 
words as the ground truth, WER is typically equal to 
classification error. This is especially true in our situation 
because practically all errors are substitution errors. Equations 
(3) and (4) are used to calculate the CER and WER, where C 
and W stand for characters and words, respectively [35].

The entire edit distance was computed in order to obtain the 
error rate measurements for accuracy evaluation and convert 
them into percentages. The formula, where D is the number of 
deletions that should have been made from the decoded face 
characters and I is the number of characters, is provided [28]. 
Characters were utilized in place of the inaccurate 
classifications, and N is the total number of characters in the 
ground truth. S is the number of characters in the ground 
truth.

Figure 9. Comparative representation of Accuracies w.r.t CER and WER

As anticipated, the fixed sentence arrangement and the small 
selection of words at each place in the GRID corpus make it 
easier to employ context, which improves performance. On 
the unseen speakers without an audio split, the accuracy 
achieved is 46.2% CER and 50.6% WER, respectively, and 
the accuracy achieved with the unseen speakers with an audio 
split is 72.8%CER and 80.8% WER, respectively (see Figure 
9). It is important to note that the maximum accuracy is 
achieved with the unseen speakers with audio compared to 
the unseen speakers without audio enhancing with the 
convolutional stack [30].

In this part, we conduct a phonological analysis of our system-
learned representations. We

first construct saliency visualizations to present where the 
system has learned to attend. To produce a CTC alignment, 
we specifically supply a model an input and voraciously 
decode a sequence of outputs. Next, we compute the gradient 
concerning the input video frame sequence using guided 
backpropagation. Second, utilizing intra-viseme and inter-
viseme confusion matrices, we train our system to predict 
ARPAbet phonemes rather than characters in order to analyze 
visual phoneme similarity [26].

We interpret the learned behavior using typical 
visemevisualization approaches
demonstrating that the model pays attention to phonologically 
significant places in the video. We refer to the lip images 
retrieved for each phoneme in our work as visemes (see 
Figure 10). Secondly, we build a morph transition from each 
viseme image to each other viseme image in a manner that is 
depicted in a figure. With the support of this transformation, 
we can create images of intermediate lip shapes between any 
two visemes, allowing for a smooth and accurate transition 
between them. We define such transformations for N visemes 
in our final viseme collection i.e. N2. Finally, we concatenate 
viseme morphs to create a unique visual utterance [31].

,
/p, b, m, v/

/o, w/
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/a, r/

/q, u/

/d, j, k/

/c, f, g, l, s, z/

/e, h, n, t, x/

/i, y/
Figure 10. Video frames representation of mapping phonemes-to-visemes

Much articulatory movement is needed to produce the first 
part of the word please: the lips must be tightly pulled together 
to create the bilabial plosive /p, b, m, v/. (frame 1). In 
preparation for the upcoming lateral /c, f, g, l, s, z/, the 
tongue’s blade touches the alveolar ridge simultaneously. 
Then, the lips separate, enabling the trapped air to escape 
(frame 6). For the close vowel /i, y/ (frame 8), the jaw and lips 
expand even more, as seen by the increased space between the 
corners of the mouth and the upper and lower lips’ midpoints. 
For the remainder of its duration (frames 2-4), during which 
the attention level significantly decreases, this vowel’s lip 
position remains stable since it is a reasonably steady-state 
vowel. When the tongue blade has to be near to the alveolar 
ridge for the sounds mentioned in a figure (frames 5 and 7), 
the jaw and lips are then slightly open [29].

We employ phoneme-to-viseme mapping for our study, 
grouping the phonemes into

the following categories: Alveolar-semivowels (A), Alveolar-
fricatives (B), Alveolar (C), Palato-alveolar (D), Bilabial (E), 
Dental (F), Labio-dental (G), Velar (H), and Lip-rounding 
based vowels (V). The GRID corpus includes 31 of the 
ARPAbet’s 39 phonemes. In order to organize phonemes into 
viseme clusters, confusion matrices between phonemes are 
first computed (see Figures 11— 15).
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Figure 11. Confusion matrix of viseme categories

Figure 12. Intra-viseme and inter-viseme confusion matrix of Alveolar 

 Figure 13. Intra-viseme and inter-viseme confusion matrix of 
Dental

 

Figure 14. Intra-viseme and inter-viseme confusion matrix of Labiodental

Figure 15. Confusion matrix of Lip-rounding vowels

The Figure 11’s diagonal confusion matrix and the extremely 
minor misinterpretation between the palato-alveolar (D) and 
alveolar (C) visemes attest to the correctness of the s viseme 
classification. The sole articulatory difference between the 
palato-alveolar /sh zh/ and alveolar /s z/ fricatives is a little 
shift in tongue position, which is contrary to the palate just 
beyond the alveolar ridge, which is hard to notice from the 
face. Alveolar /t/ and dental /th/ both suit this pattern.

It is not unexpected that the categories of alveolar stops (/t d 
n en/), dental stops (/th dh/), and labiodental stops (/f v/) (see 
Figures 12-14) are confused because they seem to be almost 
similar when completely closed at the same point of 
articulation. From the front, it is impossible to distinguish 
between vocal fold vibration and velum motion.

The reason /aa/ and /ay/ are often mistaken is because the first 
element and most of the fricative /ay/ are articulatory identical 
to /aa/—an open back unrounded vowel (see Figure 15). The 
uncertainty between the relatively close vowel /ih/ and the 
very open vowel /ae/ may seem unexpected at first, but in the 
sample, /ae/ only occurs in the word at a function word that is 
generally pronounced with a decreased, weak vowel /ah/. The 
most common unstressed vowels are /ah/ and /ih/, and there is 
significant variation in both [31].
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CONCLUSION

We presented a Convolutional Neural Network (CNN) based 
automatic lip reading system, which is the first deep learning 
application for comprehensive learning of a model that 
transforms image frame sequences storing a speaker’s mouth 
into whole sentences. By using the end-to-end approach, 
predicting sentences does not need splitting out movies into 
individual words. Our empirical analysis highlights the 
significance of effective temporal aggregation and 
spatiotemporal feature extraction. Furthermore, our system 
achieves 72.8% CER and 80.8% WER (unseen speakers with 
audio) accuracy, which is much better than the baseline 
performance of a human lip reader. In comparison, the word-
level advanced in the GRID corpus only manages 46.2% CER 
and 56.6% WER. As opposed to unseen speakers without 
audio enhancement using the convolutional stack, it is crucial 
to remember that the highest accuracy is obtained with unseen 
speakers with audio.

Although the proposed approach is empirically successful, 
extensive research on voice recognition indicates that more 
data can improve performance even further. In the following 
work, we want to substantiate this theory using methods other 
than CNN on large-scale datasets at the sentence-level level. 
In some situations, using video alone is imperative, especially 
when silent notation is involved.
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