
Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 57

Abstract: Authentication and authorization are the major
stakeholders of a computer system in terms of security.
The collapse of any of these mechanisms may cause the
failure of the entire system. There are numerous techniques
of authentication that are being implemented in several
secure software systems. These procedures include
passwords, pass cards, fingerprints, retinal scans, etc.
similarly, a large number of practices are available that
implement authorization such as access control lists, role-
based access, etc. In this paper, a novel approach is
presented to model authentication and authorization by
using formal methods. Models of software systems are
specified in Z notation. The resulting models were verified
and validated by using the Z/EVES theorem prover. The
adopted approach provides a mechanism to develop
secure software systems by using formal methods.

Keywords: Authentication, Authorization, Security,
Formal Methods, Specification, Validation, Z, Z/EVES.

INTRODUCTION
Software security is an identical aspect of modern computer
systems, especially in the context of web-based applications.
For software systems, authentication and authorization are the
primary security properties. Other security properties such as
confidentiality, integrity, non-repudiation, and availability are
also very important and dependent upon strong controls of
authentication and authorization. Authentication is the process
under which unique identification of a user or entity is
established. A person must have proper credentials in order to
authenticate into the system. An authenticated user can get
access to the system to be able to use the system resources
under certain access rights for the required resources. Without
authenticating credentials like passwords, keys, access cards,
tokens, badges, ID, etc., a user cannot be recognized as an
authenticated user and must be refused to gain access to the
system. There are three main methods of authentication. The
first method consists of keys, badges, IDs, pass cards, and
tokens. These are physical objects and a user must show these

objects in order to gain access to the system. The second
method consists of properties like DNA, fingerprints, voice
match, the cadence of typing, retinal scan, vein patterns, etc.
The third method comprises passwords, passphrases, etc.
Authorization is a process by which an authenticated user is
granted access to the system resources. In authorization
access policy for a particular user or a group of users is
defined. Depending upon the access policy already in the
system for a particular user, access is granted to that user. The
access is denied if the user has no policy defined in the system
to access a particular resource. Various authentication and
authorization schemes and mechanisms have been defined
and implemented in academia and industry. Very little work
has been done for defining these mechanisms of authentication
and authorizing using formal methods. Formal methods are
best suited for the specification and verification of
authentication and authorization. In this paper, a formal model
for authentication and authorization has been presented. The
Z notation, a formal specification, and modeling language
have been used for the specification of the models and the Z/
EVES theorem prover has been used for verification and
proof of the models. These models are proposed to for the
formal specification and validation of authentication and
authorization. It is a novel approach that will help to develop
secure and more reliable software systems. The structure of
paper consists on 7 major sections. Section 1 introduces the
paper while section 2 describes the related work. The research
methodology is presented in section 3. where we discussed
formal methods, and formal specifications overview. In
section 4, research implementation is discussed where the
formal model is described using Z. In section 6, formal
verification and validation are done by using the Z/EVES
theorem prover. We also provided future work opportunities
in a sub-section called recommendations. In the end, the
conclusion is presented in section 7.

 RELATED WORK
For any successful secure system, authentication and
authorization are the key components and are being used in
every system ranging from critical systems to commercial
systems [1-3]. Authentication refers to the verification of an
individual or entity’s claimed identity. On the other hand,
authorization pertains to the granting of access or permission
for an individual or entity to perform certain actions or possess
certain assets [4]. Authentication allows a user to be
recognized in the system as a valid user of the system [5] and

Formal Specification and Validation of Authentication
and Authorization

__
1-5-6 University of Sahiwal
2-4 COMSATS University, Sahiwal Campus
3Chulalongkorn University Thailand
Country: Pakistan, Thailand
Email: drshafiq@uosahiwal.edu.pk,

Shafiq Hussain1*,Muhammad Jamil2, Rana Abu Bakar3, Muhammad Farhan4, Muhammad Amin Abid5, Hafiz Tariq Masood6

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 58
[6]. Authorization allows an authenticated user to use a
particular system resource [7-9]. Strong authentication and
authorization controls provide a more secure environment for
transactions on the system [10]. Formal methods are
techniques based on mathematical logic for the specification,
analysis, and design of software systems and thus enable us to
reason about different properties of the whole range of data
[11-12]. Formal specification helps us to design computer
systems in such a way that enables us to analyze systems at
the design level before implementation [13]. On the other
hand, conventional methods do not distinguish the code of
component computations from their coordination, which
creates challenges in terms of debugging and maintenance
[14]. Z is a formal specification and modeling language used
in a number of critical systems and is one of the more widely
used formal methods [15]. Z is also being used for modeling
systems in the domain of operating systems, databases, and
software engineering [16-17]. The use of formal methods for
authentication and authorization enables us to reason about
the system with powerful tools and thus producing more
reliable and secure software systems [18-19]. Formal methods
have been used in many other security systems such as SSAI
and Correctness by Construction [20]. The ZMSec model, an
extension of the MARTE model, has been developed to aid in
embedded software modeling and verification, particularly in
the context of semi-formal and formal methods frameworks.
The ZMSec model, along with a proposed security property
checking algorithm, is presented as a valuable tool for
enhancing the security of embedded software systems. [21].
To improve the security and quality of the software system,
the integration between the formal and UML specification is
very important. It will help to reduce errors and uncertainty in
software requirements. By keeping in view this idea, a new
approach in library system management is proposed by
formalization using Z language and UML use case. The
formal approach has a special emphasis on UML-to-Z schema
diagrams consistency. Then it is validated using the Z / EVEs
tool [22]. In the traditional programming language, the
integrity of the program is verified at run time. However,
formal specification statements are generally not applicable
in this traditional way. It is also true that verifying the
formalization rules consistency is very difficult. A method to
prove the Object-Z norms theorem is constructed. It will build
confidence by checking formal rules consistency. The analysis
and theorem verification are done using prover Z / EVES
[23]. Formal software specifications are useful if and only if
they are consistent or do not overlap. However, checking the
accuracy or consistency of formal specifications is a difficult
task. A method for proving consistency or truth by generating
the corresponding proof of the theorem is proposed in this
study. Verifying the accuracy and consistency of the formal
Object-Z specifications is the primary goal that can secure the
determinants. Since Object-Z has features of inheritance, this
article looks at it from various aspects and focuses on reusing
the theorem’s proof. Finally, the Z / EVES proof theorem is

used to automatically analyze and verify the proof of the
Object-Z (semi) theorem [24]. Smart contracts are gaining
increasing attention due to their ability to expand the reach of
blockchain applications. However, contract security is critical
to its wide application. This study proposed a multi-level
smart contract modeling solution for analyzing contract
security. This model improved the logic rules for the program’s
byte-code and applied Hoare conditions to create a colored
Petri network (CPN) model. The pattern detection method
provided by the CPN tool helps us to analyze the security of
the contract from various angles by displaying the full state
field and incorrect execution paths. In addition, a highly
automated modeling method is designed, adding a custom
call library and a route derivation algorithm based on
trackback, which increases the efficiency and precision of the
dynamic simulation of the CPN model [25].

RESEARCH METHODOLOGY
The purpose of this research is to present a novel approach for
modeling authentication and authorization using formal
methods. We explained the core research terms briefly and
discussed our research goals by highlighting our research
goals in following subsections.

Formal Methods
The design of software and hardware systems is very complex,
particularly the safety-critical systems. The informal and
semi-formal approaches for designing good computing
systems are not sufficient. The design developed in these
approaches cannot be executed by using automated tools.
Hence such designs cannot be verified, resulting in the
production of low-quality systems. If these designs can be
developed by using formal methods which are approaches
based on mathematics, then the resulting designs can be
verified by using theorem proving and model checking
techniques. Formal methods also help to validate requirements
against a software design. A wide range of formal methods is
available such as Z, Object-Z, VDM-SL, VDM++, Alloy, Z/
EVES, Isabelle, Coq, SPIN, etc. Z is a specification and
modeling language based on set theory. Z is a model-based
language. A model in Z consists of a set of state variables and
a collection of constraints collectively called the state of the
system and a set of operations that can change the state of the
system. Models in Z can be analyzed and verified by using
automatic tools such as Z/EVES. A model is written in Z and
then it is passed to Z/EVES which can show that model is
consistent and correct. Z/EVES is a theorem prover used for
analyzing and verifying Z specifications. The major functions
of Z/EVES are parsing, type checking, domain checking,
schema expansion, precondition calculation, refinement
proofs, and theorem proving. Z/EVES is based on the EVES
system and uses EVES prover to carry out its proof steps. The
language for EVES is Verdi.

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 59
Security Properties
Software systems need to be self-resilient in order to avoid
attacks. This can be achieved by identifying vulnerabilities in
the system by using techniques such as threat modeling and
incorporating security properties into the design of systems.
Security properties if incorporated properly into the system
act as mitigation measures to protect systems assets and
resources. There are many security properties, the most
important of which are authentication and authorization.
These security properties determine the access control of the
system. In this paper, only authentication and authorization
will be formally specified, verified, and validated. Other
security properties are out of the scope of this paper.

Formal Specification
This formal model for authentication and authorization is
developed in Z, a model-based formal specification language.
The formal specification of authentication and authorization
consists of a set of basic types, a collection of global types, a
static model, and a dynamic model. The static model is a set
of state variables, collectively called the state of the system
and a set of invariants, imposing constraints on the state
variables. These invariants must always be satisfied for the
system to work securely. The operations of the system are
defined in the dynamic model. These operations can change
the state of the system. The operations in the dynamic model
also include pre and post conditions. The pre conditions
represent the state before the operation and the post conditions
represent the state after the operation has been carried out.

Figure 1. Flow of Research Methodology

IMPLEMENTATION
Basic Types
There are four basic types in the system. The first type
“USER” represents all the real-world users or subjects acting
on behalf of users in this system. The second type
“CREDENTIAL” represents the credentials of users. These
credentials may be passwords, keys, pass cards, fingerprints,
retinal scans, etc. The type “RESOURCE” represents all the
resources the system manages. These are those resources that
a user may access to perform his or her actions in this system.
The type “ACTION” represents all the actions that a user may
perform on system resources.

Figure 2. Basic Types
Global Types
The global types are those types that can be accessed and used
in all the schemas of a Z specification. There are two global
types in this system. The first global type is Status which
represents the status of a user or set of users by informing
whether a user is authenticated, authorized, or a current user.
A current user is always the one who is authenticated user and
authorized user. Also, an authorized user is always an
authenticated user.

Figure 3. Global Types
The second global type is which represents the status of
action of a user by telling whether an action is allowed or not
allowed to a user.

Figure 4. Global Types
Static Model
Access Control System: this schema represents the state of the
system. In this schema, the sets users, resources and actions
represent all the users, resources and user actions respectively.
The function registered_users represents those users who
have valid credentials and are recognized in the system. The
function represents those users who have been allocated a set
of resources. The function represents a set of actions that are
allowed on a particular resource.

Figure 5. Static Model

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 60
The function represents the set of actions that are allowed to
a particular user in the system. The function represents the
authenticated users in the system. The function authorized_
users represents those users who are authorized in the system.
The function current_users represents the current users of the
system.
Invariants: (i) All the registered users must be a subset of
users. (ii) The users who want to access the system resources
must be a subset of users and the resources for which access
is granted must be a subset of resources. (iii) The users who
want to perform an action on a resource must be a subset of
users and all the associated actions must be a subset of actions.
(iv) All the resources on which certain actions are defined
must be a subset of resources and associated actions must be
a subset of actions. (v) All the authenticated users must be a
subset of registered users. (vi) All the authorized users must
be a subset of authenticated users. (vii) All the current users
must be a subset of authorized users.

Initialization Schema
InitAccess Control System: this is the initialization schema.
The initialization schema is a very important schema for the
validation of models developed in any formal specification
language. In this initialization schema, all the state variables
are empty initially. This means that at least one state of the
system exists. Although obvious, we will prove this property
in the next section of this paper.

Figure 6. Initialization Schema

Dynamic Model
The operations in the system are defined in the dynamic
model. In the dynamic model of the system, the state of the
system may change as a result of the operations performed.
The primed variables show the state after the operation has
been performed. The unprimed variables show the state
before the execution of the operation.

Add_Users: this operation adds new users into the system.
The first line shows inheritance. All the state variables from
the static model are accessible in this operation. It also tells us
that the system state can change as a result of this operation.
The pre-condition is: that the users must not already be
present in the set users. Otherwise, there are no constraints on

the new users. In this operation, the set users represent all
those users who are recognized in the system and can access
very general information from the web application. If they
want to access further information then they must be registered
users before accessing any particular data. The users in set
users need not have credentials to access general information.

Figure 7. Adding Users to the System
Add_Resources: this operation adds new resources to the
system. The first line shows inheritance. All the state variables
from the static model are accessible in this operation. It also
tells that the system state will change as a result of this
operation. The pre-condition is: that the resources must not
already be added to the system. Any resource from the
universe cannot become the resource in the system. In order
for a resource to be accessed and operated upon, it must be
recognized and added in the system. This operation is doing
the same thing.

Figure 8. Adding Resources in the System

Add_Actions: this operation adds actions to the system.
These actions may be the read action, write action, append
action and execute the action, or some other action. The first
line shows inheritance. All the state variables from the static
model are accessible in this operation. It also tells that the

system state will change as a result of this operation. The pre-
condition is: that the actions must not already be present in the
set actions. Users cannot perform every action on the system
resources. Only those actions can be performed which are
explicitly added to the system resources. This operation does
the same thing.

Figure 9. Adding Actions in the System

Add_Registered_User: this operation registers the users who
have a set of credentials for unique identification. The first

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 61
line shows inheritance. All the state variables from the static
model are accessible in this operation. It also tells that the
system state will change as a result of this operation. The pre
conditions are: (i) the user must be present in the set users. (ii)
the user must not already be a registered user.

Figure 10. Registering Users in the System

Add_Actions_to_User: this operation adds actions to the
registered users. The first line shows inheritance. All the state
variables from the static model are accessible in this operation.
It also tells that the system state will change as a result of this
operation. The pre conditions are: (i) the user must be a
registered user. (ii) the actions must be present in the set
actions.

Figure 11. Adding Actions to Users in the System

Add_Actions_to_Resource: this operation adds actions to the
resources. The first line shows inheritance. All the state
variables from the static model are accessible in this operation.
It also tells that the system state will change as a result of this
operation. The pre conditions are: (i) the resource must be
present in the set resources. (ii) the actions must belong to the
set actions.

Figure 12. Adding Actions to Resources in the System

Add_Resources_to_User: this operation adds resources to
users. The first line shows inheritance. All the state variables
from the static model are accessible in this operation. It also

tells that the system state will change as a result of this
operation. The pre conditions are: (i) the user must be a
registered user (ii) the resources must be present in the set
resources.

Figure 13. Resources to Users in the System

Remove_Users: this operation removes users. The first line
shows inheritance. All the state variables from the static
model are accessible in this operation. It also tells that the
system state will change as a result of this operation. The pre-
condition is: that the users must be in the set users.

Figure 14. Removing Users from the System

Remove_Actions: this operation removes actions from the
set actions. The first line shows inheritance. All the state
variables from static model are accessible in this operation. It
also tells that system state will change as the result of this
operation. The pre condition is: the actions must belong to the
set actions.

Figure 15. Removing Actions from the System

Remove_Resources: this operation removes resources from
the system. The first line shows inheritance. All the state
variables from the static model are accessible in this
operation. It also tells that the system state will change as a
result of this operation. The pre-condition is: that the
resources must already be present in the system.

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 62

Figure 16. Removing Resources from the System

Authentication: this operation authenticates a user into the
system. The first line shows inheritance. All the state variables
from the static model are accessible in this operation. It also
tells that the system state will change as a result of this
operation. The pre-condition is: that the user must be a
registered user.

Figure 17. Authenticating Users in the System

Authorization: this operation authorizes a user to access
resources. The first line shows inheritance. All the state
variables from the static model are accessible in this operation.
It also tells that the system state will change as a result of this
operation. The pre conditions are: (i) the user must be an
authenticated user. (ii) the user must be associated with a set
of required actions. (iv) the resource must have the required
set of actions the user wants to perform.

Figure 18. Authorizing Users in the System

Add_Current_Users: this operation adds current users to the
system. The first line shows inheritance. All the state
variables from the static model are accessible in this operation.
It also tells that the system state will change as a result of this
operation. The pre conditions are: (i) the user must be an
authenticated user. (ii) the user must be an authorized user.

Figure 19. Adding Current Users in the System

Check_Status: this operation checks the status of a user to
access resources. The first line shows inheritance. All the
state variables from the static model are accessible in this
operation. If the user is an authenticated user and not an
authorized user then the status will be authenticated. If the
user is an authorized user and not a current user then the status
will be authorized. If the user is a current user then the status
will be current.

Figure 20. Checking Status of Users in the System

Check_Action: this operation checks the status of an action to
be performed by a user. The first line shows inheritance. All
the state variables from the static model are accessible in this
operation. The pre conditions are: (i) the user must be an
authenticated user. (ii) the user must be an authorized user. If
the action supplied by the user is present in the set of actions
granted to that user then the user is allowed to perform that
action. If the action supplied by the user is not present in the
set of actions granted to that user then the user is not allowed
to perform that action under the system resources.

Figure 20. Checking Actions in the System

Formal Validation : In conventional computer software
systems, testing is a useful technique for validation. But
testing has limits due to the infinite volume of input data. It is

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 63
impossible to test every input within due time. Also, there are
some systems that are not feasible for exhaustive testing. For
example, security systems are the case where exhaustive
testing is not possible because security properties cannot be
validated by exhaustive testing techniques. A solution to this
problem is the formal validation of models of security
systems. Formal validation can be done with the help of tools
like model checkers and theorem provers. By using these
tools, software systems can be analyzed and proved for the
whole range of data, and important properties can be checked
and validated. There are three main approaches for formal
validation: theorem proving, model checking, and static
analysis. In theorem proving formal mathematical proofs are
generated by using theorem provers or proof assistants. Some
theorem provers are automatic and generate formal proofs
automatically without human user intervention. While other
theorem provers are semi-automatic and require guidance
from human users. Model-checking tools exhaustively
explore the finite models of computer systems for all possible
states of the systems and generate counter-examples if some
model fails to satisfy a certain property. But model checking
has the problem of state explosion. In that case, only some
parts of the system are checked by model checkers and it is
assumed that the system will perform as in the case of this
small part of checking. Static analysis automates the
abstraction of program execution. Also, software systems can
be validated manually by solving theorems using mathematics.

In this paper, formal models of authentication and authorization
specified in the previous section have been validated
automatically by using the Z/EVES theorem prover. Z/EVES
is an automatic theorem prover and generates formal proofs
automatically. The formal validation of authentication and
authorization in this research consists of syntax checking,
type checking, proving the initial state theorem, and proving
properties.

Syntax and Type Checking: the formal specifications of
authentication and authorization were written by using a mini
text editor provided by the Z/EVES theorem prover. The
syntax and types of these specifications were checked
automatically by using the command “Check all paragraphs”
provided by Z/EVES. In this way, we checked that all the
variables in the specification have right syntax and have right
type.

Proving Initial State Theorem: the purpose of the initial state
theorem is to show that at least one state of authentication and
authorization exists in the system.

Figure 21. Proving Initial State Theorem

This theorem has been proved by using prove by reducing the
command of the Z/EVES theorem prover.

RESULTS
Proving Properties: properties are used to assert that the
system behaves as expected. In this paper, three properties:
checkAuthenticated, checkAuthorized, and checkAction have
been proved by using theorem proving commands of Z/EVES
as shown below. This theorem checks that an authorized user
is an authenticated user. This theorem was proved by using
prove by reducing the command of Z/EVES.

Figure 22. Proving Theorem for Authenticated Users

This theorem checks that a current user is an authorized user.
This theorem was proved by using prove by reducing the
command of Z/EVES.

Figure 23. Proving Theorem for Authorized Users

This theorem checks whether a user who submits an action is
allowed or disallowed to perform an action on the system
resources. This theorem was proved by using prove by
reducing the command of Z/EVES.

Figure 24. Proving Theorem for Checking Users’ Actions
Recommendations

CONCLUSION
In the realm of computer software, security is of utmost

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 64

importance, especially due to the increasing prevalence of
distributed systems and the internet. Authentication and
Authorization is the main concern, to develop secure software
products. Formal methods are very suitable to analyze and
validate security properties. This paper presented the formal
specification of authentication and authorization with the help
of practical implementation. The described models are
formally specified using Z specification and the validation is
done using the Z/EVES theorem prover. The paper covers a
fine review of past studies. Security properties including
confidentiality, integrity, availability, and non-repudiation
have been elaborated as well. The proposed models of
authentication and authorization have been formally specified
and validated in the paper.

RECOMMENDATIONS
In this paper, the models for authentication and authorization
using formal methods are discussed with the help of Z notation
specifications. The models are also verified and validated
using Z/EVES theorem prover. The adopted approach
addressed two major properties of security (authentication
and authorization) with the help of formal methods. In future,
the formal specification and validation of other security
properties and the relationship between these properties can
be investigated.

REFERENCES

[1] W. Jie, et al., “A review of grid authentication and
authorization technologies and support for federated
access control.” ACM Computing Surveys
(CSUR) 43(2), 2011.

[2] V. Welch, et al., “Security for grid services.” Proceedings
of 12th IEEE International Symposium on High
Performance Distributed Computing, IEEE, 2003

.
 [3] GJ. Ahn, and S. Ravi, “Role-based authorization

constraints specification.” ACM Transactions on
Information and System Security (TISSEC) 3(4), pp.
207-226, (2000).

[4] De Almeida, M. G., & Canedo, E. D. (2022).
Authentication and authorization in microservices
architecture: A systematic literature review. Applied
Sciences, 12(6), 3023.

[5] X. You, and Z. Lingfeng , “Improved Authentication
Model Based on Kerberos Protocol.” Advances in
Multimedia, Software Engineering and Computing Vol.
1. Springer, Berlin, Heidelberg, pp. 593-599, 2011.

[6] G. López, et al. “A network access control approach

based on the AAA architecture and authorization
attributes.”Journal of Network and Computer
Applications 30(3), pp. 900-919, 2007.

[7] V. Kolovski, J. Hendler, and B. Parsia, “Analyzing web
access control policies.” Proceedings of the 16th
international conference on World Wide Web. ACM,
2007.

[8] J.B. Joshi, E. Bertino, et al., “A generalized temporal
role-based access control model.” IEEE Transactions on
Knowledge and Data Engineering 17(1), pp.4-23, 2005.

[9] H. Hu and A. Gail-Joon, “Multiparty authorization
framework for data sharing in online social
networks.” IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, Berlin,
Heidelberg, 2011.

[10] D. F. Ferraiolo, et al., “Proposed NIST standard for role-
based access control.” ACM Transactions on
Information and System Security (TISSEC) 4(3),
pp.224-274, 2001).

[11] J.X. Xia, and H.W. Tang, “Formal method for
requirement analysis using Z notation.” Sci. Technol.
Eng, pp.2245-2246, 2008.

[12] R.M. Sidek, and N. Ahmad, “Deriving formal
specification using Z notation.” International Conference
on Computer Technology and Development, 2009.
ICCTD’09, Vol. 1, IEEE, 2009.

[13] N.A. Zafar and A. Fahad , “Transformation of class
diagrams into formal specification.” International
Journal Computer Science and Network Security 11(5),
pp. 289-295, 2011.

[14] Le Khanh, T. (2023). Design of Correct-by-Construction
Self-adaptive Cloud Applications using Formal
Methods (Doctoral dissertation, Université de Lille).

[15] J.B, Almeida, et al., “An overview of formal methods
tools and techniques.” Rigorous Software Development.
Springer London, pp. 15-44, 2011.

[16] V. Dimitrov, ““Relationship” specification in
Z-notation.”Physics of Particles and Nuclei Letters 8(4),
pp.391-394, 2011.

[17] J. Woodcock, et al., “Formal methods: Practice and
experience.” ACM computing surveys (CSUR) 41(4),
p.1-36, 2009.

[18] S. Hussain, E. Harry and D. Peter “Threat modeling
using formal methods: A new approach to develop

Journal of Information & Communication Technology - JICT Vol. 16 Issue. 2 65

secure web applications.” 7th International Conference
on Emerging Technologies (ICET), IEEE, 2011.

[19] J. Jacky, The way of Z: practical programming with
formal methods. Cambridge University Press, 1997.

[20] A. Coronato, and D. Giuseppe, “Formal specification
and verification of ubiquitous and pervasive
systems.” ACM Transactions on Autonomous and
Adaptive Systems (TAAS) 6(1), p.1-9, 2011.

[21] X. Hu, Y. Zhuang, and F. Zhang, “A security modeling
and verification method of embedded software based on
Z and MARTE,” Computers & Security, vol. 88, p.
101615, 2020.

[22] Z. H. Muhamad, D. A. Abdulmonim, and B. Alathari,
“An integration of uml use case diagram and activity
diagram with Z language for formalization of library
management system.,” International Journal of
Electrical & Computer Engineering (2088-8708), vol. 9,
2019.

[23] Q. Cheng and Z. Wen, “Checking Object-Z Formal
Specification with Z/EVES automatically,” in IOP
Conference Series: Materials Science and Engineering,
2019, vol. 490, no. 4, p. 04 2016.

[24] W. Wan, Y. Yu, Q. Zeng, and Z. Wen, “Checking the
consistency of Object-Z formal specification based on
theorem proof,” Journal of Computational Methods in
Sciences and Engineering, no. Preprint, pp. 1–10, 2019.

[25] W. Duo, H. Xin, and M. Xiaofeng, “Formal Analysis of
Smart Contract Based on Colored Petri Nets,” IEEE
Intelligent Systems, 2020.

