
Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 30

 Abstract- Parsing is to analyze the input lexeme and compilers
 have difficulty in processing due to human language structure,
 improvement in parsing processing can improve compiler speed.
 The paper aims at improving parsing by the introduction of
 Chomsky Normal Form (CNF) to Context-Free Grammar
 (CFG). For this research study, conventional English grammar
 in CFG is used and the conventional conversion method is used
 thoroughly. The grammar is converted into LL(1) form with the
 help of the LL(1) conversion algorithm and for the confirmation
 of successful conversion parsing table of LL(1) is conferred. For
 the analysis of LL (1) grammar input stack of 50 lexeme is
 verified by parsing clinched with the LL (1) grammar. The
 conventional LL(1) English grammar is induced with Chomsky
 Normal Form (CNF) and the resultant CNF converted LL (1)
 grammar is parsed with an input stack of 50 lexeme that are
 used for the LL(1) grammar. The study concluded that the
 introduction of CNF into LL(1) does not show significant
 improvement after the introduction of CNF into conventional
 LL(1) parser Introduction of CNF into LL(1) brings out parsing
 difficulty in processing the input stack of LL(1) into CNF
introduced LL(1

Keywords: Compiler, Chomsky Normal Form, LL (1)
Parsing, Parsing, Top-down parsing.

INTRODUCTION
The parser is the segment of a compiler that takes a token as
input and with the help of contemporary grammar, renovates
it into the equivalent parse tree. A parser is also called a
Syntax Analyzer.

The term has a tad distinct meanings in different branches of
linguistics and technology. Orthodox sentence parsing is
often achieved as a way of information the precise meaning of
a sentence or lexeme, on occasion with the resource of gadgets
comprehensive sentence diagrams. It typically emphasizes
the implication of grammatical dissections which include
predicate.

Patricia et al. [1] elaborated that within computational
linguistics the time period is used to refer to the formal
evaluation by way of a processor of a sentence or other words
into its parts, consequential in a parse tree displaying their

syntactic relative to every different, which might also integrate
semantic and other facts (p-factors).
The parsing can be preceded or followed with the aid of
different steps, or these can be mixed into a unmarried step.
The parser is often preceded by using a separate lexical
analyzer, which creates tokens from the sequence of enter
characters; alternatively, these may be blended in scanners
parsing.

Patricia et al. [2] similarly elaborated that Parsers can be
programmed with the aid of hand or maybe routinely or semi-
mechanically engendered by means of a parser generator.
Parsing is corresponding to templating, which produces
formatted output. those can be carried out to one-of-a-kind
domains, but regularly appear collectively, including the
scanf/printf pair, or the input and output stages of a compiler.
The parse tree is castoff as the idea for paraphrase. Parsers are
considered reliable with the path in which they parse. the two
wide classes of parsers are top-down, in which the tree is built
from the basis right down to the leaves, and bottom-up, in
which the parse tree is created from the leaves upward to the
foundation.

Parsing algorithms that work for any explicit grammar are
complex and ineffective. The complexity of such algorithms
is O(n3), which means that the total time they yield is on the
order of the dice of the period of the lexeme to be parsed. This
highly massive amount of time is required because these
algorithms regularly must lower back up and reparse part of
the sentence being analyzed. Reparsing is needed while the
parser has made a mistake within the parsing technique.
Parser additionally calls for that a part of the parse tree being
created ought to be pull to bits and rebuilt. O(n3) algorithms
are normally no longer useful for systems, as well as syntax
analysis for a compiler, due to the fact they may be far too
sluggish. In conditions including this, computer scientists
frequently look for quicker algorithms, even though much
less popular. Generality is traded for performance.

Grammar may be regarded as a device that computes the
sentences of a language. The type of grammars become
brought via Noam Chomsky is divided into 4 instructions:
enumerable grammars, Context-sensitive grammars, CFG’s,
everyday grammars. A grammar “G = (V, T, S, P)” is stated to
be context-free if all productions have the shape “A → x”, “

”. A language “L” is said to be

Induction of Chomsky Normal Form in Con-
text-Free Grammar of LL(1) Parser: Some Initial

Results
Dilawar Naseem1, Muhammad Shumail Naveed1, Hassan Ali1 , Samra Riaz2

__

1 University of Balochistan, Quetta Country Pakistan
2 Sardar Bahadur Khan Women University,Quetta Country Pakistan

(

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 31
context-free if there is a context-free grammar “G” such that
“L = L (G)”.

According to Alexandar [3], the control that critiques formal
grammars and dialects is a part of carried out arithmetic and
is taken into consideration formal language concept. Its
packages are observed in theoretical computer science,
linguistics, formal semantics, numerical rationale, and
exclusive zones.

The formal definition of the syntax of grammar is done by the
author Chomsky [4] and [5], in his work he explains via
letting a grammar G includes the following components.
• Finite set N of variables that doesn’t appear in the lexeme
generated through G.
• Finite set Σ of terminals that are disjoint from N.
• Finite production rules P of the from

distinguishes as a begin symbol.
wherein U is union operator and * is Kleene star operator.
each creation runs maps starting with one series of symbols
then onto the following, in which the primary string
incorporates a discretionary range of symbols given no much
less than one of them is a nonterminal. For the state of affairs
that the second one string comprises solely of the unfilled
string i.e., that it includes no symbols by using any manner
and it might be supposed with unique documentation (often, e
or ε) to keep a strategic distance from disarray.

The semantics of grammar as mentioned by using Chomsky is
defined on operations of grammar as follows.

The grammar “G=(N, Σ, P, S)” is efficiently the semi-thue
system “(NUΣ, P)”, transforming word inside the very same
manner; the primary difference is in that we apprehend unique
nonterminal symbols which have to be revised in revamping
leads, and are simply intrigued by way of rewritings from the
assigned start image to word with out variables symbols.
As very briefly explained with the aid of Johan [6], the
solicitations of grammars as Grammars are an essential tool
for portraying dialects. The applications that have been
applied to provide the numerous kinds of sentence formalisms
from grammar for feature dialects to programming dialects, to

dialects used to depict improvement in science.

This examine determines the effect of introduction LL(1)
grammar with Chomsky normal form (CNF) and avails
consequences. This examine also squares the parsing pace of
the LL(1) parser earlier than and after the introduction of
CNF with context-free grammar (CFG).

 LITERATURE REVIEW
Ali et al. [7] worked on LL(1) parsing and Greibach normal
form (GNF) by comparing the two grammar formats with
parsing expression grammar (PEG). In his work he
successfully dealt with arithmetic expression Grammar in
both LL(1) and GNF grammars, resulting in the successful
integration of the two formats.

Naveed [8] also worked on LL(1) parsing in addition to
terminal prefixing. He also successfully merged the two
formats with parsing for arithmetic expression grammar. he
induced the terminal prefixing into LL(1) grammar format
and achieved the alteration.

Kuhl et al. [9] worked on a parser generator that turned into
implemented Java. As this grammar is written in EBNF and it
assessments LL (1) well that either it’s far suitable for
“recursive descent parsing” and additionally generates parser
that consists of the set of sequential items. It gives the scanner
and also classifies positive interfaces which are gratifying and
can be carried out for the parser to construct parsing bushes.
After Wirth’s well-known parser Oops was spotted for parsing
and the nodes are substances and navigate to techniques
immediately related to the graph nodes. A standard parser
uses a grammar graph that is specifically designed to illustrate
the techniques of language popularity and how it’s far
performed. Oops generates a parser robotically and higher
rejects the unsuitable grammar grow to be its natural manner
of arranging its graph nodes. Oops uses the divide and
overcome method to verify its grammar and parsing as nicely.

Dabhoiwala [10] presented a review on LL(1) parser that
details the parser and its performance. It states that parsing is
the second step of any program, initially it scans every lexical
unit of the program. A lexical unit can be a keyword, operator
any constant or identifier of any programming language.
Once all the units of programming language are operated or
identified by a lexical analyzer then the parsing is performed
over those language units. This shows that the parser checks
for accurate syntax, once it declares the standard syntax of
any language or program, then it creates the parsing tree.

Sam et al. [11] designates LL (1) that when it’s pragmatic to
grammar “G”, It produces LL (1) parser for that grammar “G”
only if such a parser exists. This approach confirm about the
generator and parser that either it produces that sound and
complete grammar and they terminate all input on valid or

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 32
invalid without using any fuel parameters. This study mainly
shows that it was on the two possible extensions of this
parsing which are:
1- Ruling out parser errors as priori
2- Generating parser source code

The parser in this paper states and discussed those branches
that make the extraction process survive well but slow down
the resulting code even though it never comes to this state if
correct parser LL (1) is being applied to the language. A very
useful analogy states the difference between interpreter and
parser while stating that a well-typed program can’t go wrong,
Robin [12] and branches can be removed from the parser
while performing function with correct LL (1) parser table
instead of the just-typed table.

This prior approach is more efficient to rule out the errors
according to some observers discussed in this paper. The
parser also discussed in this paper uses table-based interpreters
which is likely inefficient as compared to generated parser
code.

Michael et al. [13] in his paper discusses the systematic and
lots green LL (1) slipups convalescence method applied for an
LL (1) generator. It routinely generated proper messages with
appropriate diagnostic information and corrected mistakes by
resources of clearance some input stack and correspondingly
it go off some symbols from parsing -stack to reinstate the
effective conformation of the parser. This paper defines the
concept of reliability that’s statement based and it observes
how the enter symbols vary from each different symbols
incapability as recovery points. A symbol that has high
reliability is probably now not located in the enter by twist of
fate so because of that it become by no means discarded and
saved on parsing with this image. when a few blunders is
detected only then the mistake recuperation recurring is
invoked so there may be no such additional habitual or time is
required for parsing correct applications and this paper
experimented with this error restoration method results in 90
% accuracy.

John [14] delivered a very efficient incremental LL (1) parsing
set of rules for language-based totally editors that have been
carried out in Fred, a dependent display screen-based editor
that specially makes use of the shape popularity technique.
This paper featured absolutely best-grained analysis and an
outstanding method to parsing control and mistakes recovery.
A display screen-primarily based editor has a keystroke
intensive mode for person interplay that follows the cursor
style for parsing. It also supplied incomplete LL (1) grammars
for managing the complexity of full language grammars and
additionally dependent editor assist for most effective partly
structured undertaking languages. This approach discussed
the semantics of entire grammars and additionally offered the
transformation of incomplete LL (1) into complete LL (1).

James et al. [15] and Terence et al. [16] implemented
LPARSER, LL (1) parser-based generation system in Turbo
Pascal, and this system mainly consists of a table generator
and a skeleton parser along with a lexical analyzer. This table
generator read grammar description from the text files and
then it generates several files and compile them along with a
skeleton parser. As there are similarities among LL (1) parser
and LR (1) parser this paper also discussed those parsers and
most importantly this approach has been compared with the
well-known parser generator YACC which is developed by
Steve Johnson at bell laboratories and it also read the grammar
description and generates LALR (1) parser written in C
language. As YACC has semantic actions and uses the bottom-
up approach for parsing and maintaining the stack other than
this LPARSER uses the top-down approach for implementing
and maintaining its stack without relying on parsing stack.
Parr [17] discussed a parser generator named ANTLR, which
is a parser generator that has a amalgamation of “hand-coded”
parser and parser code. It is informal to practice than
supplementary language tools and the significant feature of
ANTLR is that it delivers bases, it allows the parser with
arbitrary expressions while using semantic and syntactic
context. It also eliminates the hand-tweak output of ANTLR.
It also integrates lexical analysis and syntactic scrutiny
receives LL(k) grammars for k>1 with extended BNF code
and also engenders an mechanically intellectual syntax tree.

MATERIALS AND METHODS
Research methodology for the LL(1) and CNF introduced
LL(1) is syntactically and systematically defined in this study.
The proposed CNF introduced LL(1) algorithm works with
all the symbols of Grammar (G) and the production rules (Z).
The research methodology is here.

Start
Let G be the

Grammar with
Productions (Z).

There cannot exist
any ε, unit, useless
and left recursive

productions.

Then, G(Z) is
LL(1)

For, LL(1)
First(G(Z)) and

Follow(G(Z)) are
calculated.

For LL(1),
Parsing Table
for (G(Z)) is
Calculated.

For LL(1) G(Z) to
be in CNF
(G’(Z’))..

Then G’(Z’) ∈ X
→YW,

X →b, and X →
ε

Then
First(G’(Z’)), and

Follow(G’(Z’))
are calculated.

Then Parsing
Table for
(G’(Z’)),

Calculated.

Hence, Newly
generated CNF

Introduced LL(1)
Grammar G’(Z’).

End

Figure 1 Research Methodology.
The main assumptions of the study are there cannot be any,
unit, and useless productions for the grammar to be in LL(1)
grammar structure. The LL(1) grammar structure also does
not accept left recursion. Where the CNF suggests grammar
to adapt to the new structure of CNF that is the production
rules from the right-hand side must carry only two variables.

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 33

A) Algorithm to convert the LL(1) grammar in CNF based
LL(1) parser
Algorithm: Converting LL (1) Grammar to Chomsky Normal
Form

The algorithm starts with condition that if and only if the
grammar remains unambiguous and each production rule of
the grammar can generate more than one parse tree. Then, for
all the symbols of grammar G(X) there must be terminal
symbols and non-terminal symbols can generate rules,
following the removal of useless productions.

After removing useless productions, followed by the unit
productions removal. To ensure the CNF syntax LL(1)
grammar structures are modified to a CNF condition where
the production set starts with non-terminal and followed only
one terminal symbol.

The production rules of the CNF Introduced LL(1) Grammar
from the right side can not add any variable more than 2 if any
production rule carries more than 2 symbols then a new
symbol must be introduced to satisfy CNF grammar syntax.

B) Algorithm to Construct Chomsky normal form (CNF)
based LL(1) parsing table

The algorithm (Construction of CNF based LL (1) Parsing
Table) explains the parsing procedure for parser table P’.

Algorithm: Construction of CNF based LL (1) Parsing Table.

1.	 Considering CNF based LL (1) parser to utilize all the
non-terminal symbols with lookahead 1 then every
element ‘Z’ belongs to Grammar ‘G’.

2.	 For every element ‘X’, non-terminal ‘N’ and lookahead
‘a’ then there exists a condition Z | (N, a)

3.	 The algorithm works with starting from Z | (N, a) whole
considering non-terminal ‘N’ and lookahead ‘a’.

4.	 For LL (1) grammar paring table (T) there exists another
grammar G’ then there exists Z’ | Z’ (N, a).

5.	 For grammar G’ there exists non-terminal t’ with
lookahead a’.

6.	 For grammar G’, blank entries in the parsing table (P’)
are again errors.

The algorithm Starts by firstly ensuring non-terminals ‘N’,
lookahead ‘a’, and productions carrying N, a, and Z. That
provides knowledge of parsing table constructed by following
the grammar production rules. Also, note the total number of
tuples used within parsing table P’. The second last step points
to non-terminal N and lookahead t and finally begins for
blank or undefined spaces pointing to the errors in parsing
table P’.

C) Algorithm for the construction of LL(1) first and follow.

The construction of LL (1) Grammar with respect of LL (1)
Construction Algorithm two association functions are
important that are first and follow. In the above algorithm
construction of the first and following table is being done by
considering any CNF grammar ‘G’ with Parsing Table ‘T’.

Algorithm: Algorithm for Construction of First and Follow
for LL (1) Algorithm.

1.	 Consider any CNF Grammar ‘G’ for Parsing Table ‘T’
while every production B of Grammar ‘G’.

2.	 For every terminal symbol b, First of (start adding B to
T [B, b].

3.	 If is in First (), then start adding B on T [B, b] for
every terminal b in Follow(B).

4.	 If is in First (with $ in Follow (start adding B to T [B,
$].

5.	 Blank or Undefined entries in Parsing Table ‘T’ are
counted as errors.

Starting by considering production B for grammar ‘G’.
Following the step where for every terminal symbol b, First
(to T [B, b]. Then, there exists a condition where If and only
If happens to be the first of then for production B parsing
table entry should be T [B, b]. The second last step describes
another possibility for First (with $ then T [B, $] occurs. The
final step defines blank entries in Parsing Table ‘T’ counted as
errors.

This section of the article further has the following parts,
section D is traditional LL(1) English Grammar and section E
is the CNF introduced LL(1) English Grammar with First and
Follow sets for both of the algorithms the traditional and
newly generated one (CNF Introduced LL(1) English
Grammar). Section D and Section E also describe the parsing
table for both of the grammars (Traditional LL(1) English
Grammar and CNF Introduced LL(1) English Grammar).
Instead of putting all the tables in the Appendix, add all the
tables in this section

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 34

D. Traditional LL(1) English Grammar

The steps defined above are applied to the LL(1) English
Grammar shown below.
“S” -> “NP” “VP”.
“NP” -> “the” “Nominal” | “a” “Nominal” | “Nominal” |
“ProperNoun” | “NP1” “PP”.
“NP1” -> “PP” “NP”.
“Nominal” -> “N” | “Adjs” “N”.
“N” -> “cat” | “dogs” | “bear” | “girl” | “chocolate” | “rifle”.
“ProperNoun” -> “chris” | “fluffy”.
“Adjs” -> “Adj” “Adjs”.
“Adj” -> “young” | “older” | “smart”.
“VP” -> “like” | “likes” | “thinks” | “shot” | “smells” | “VP1”
“PP”
“VP1” -> “PP” “VP”
“V” -> “like” | “likes” | “thinks” | “shot” | “smells”.
“PP” -> “Prep” “VP”.
“Prep” -> “with”.

The above grammar comes with terminal symbols, non-
terminal symbols. Terminal symbols are with, smells, shot,
thinks, likes, like smart, older, young, rifle, chocolate, girl,
bear, dogs, cat, a the, and number non-terminals S, NP, NP1,
Nominal, N, ProperNoun, Adjs, Adj, VP, VP2, V, PP, Prep.
The above grammar is clear because it does not have an
unnecessary unit, inaccessible and -free productions.

The First and Follow sets for LL(1) English Grammar are
here.

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 35
The parsing table for the above-mentioned LL(1) English
Grammar is shown in tabular form on appendix I. Parse tree
drives the construction of input lexeme from grammar (G).
Let I Є G(Z), where I is the input word, along with grammar
(G), and production rules (Z).

Tree nodes are terminal and non-terminal variables and in
figure 2(a) parse tree of the input string “the dogs shot” for
“LL(1) English Grammar” is below.

Fig 2(a) Parse tree of input string “The dogs shot” for “LL(1)
English Grammar

Tree nodes for fig 2(a) are the dogs and shot along with the
level of 5, depth 4d, leaf nodes (the, dogs, shot), the root node
(S).
Below fig 2(b) is a derivation of input string “the dogs smells”
for “LL(1) English Grammar

Fig 2(b) Parser tree of input string of “the dogs smells” for “LL(1)
English Grammar”.

Tree nodes for fig 2(b) are the, dogs, and smells along with
the level of 5, depth 4d, leaf nodes (the, dogs, smells), the root
node (S).

E. CNF Introduced LL(1) English Grammar
The steps defined in section 2 are applied to the “LL(1)
English grammar” and the newly generated “CNF Introduced
LL(1) English Grammar” is mentioned below.
“S” -> “NP” “VP”.
“NP” -> “A” “Nominal” | “B” “Nominal” | “cat” | “dogs” |
“bear” | “girl” | “chocolate” | “rifle” | “Adjs” “N” | “chris” |
“fluffy” | “NP1” “PP”.
“A” -> “the”.
“B” -> “a”.
“NP1” -> “PP” “NP”.
“Nominal” -> “cat” | “dogs” | “bear” | “girl” | “chocolate” |
“rifle” | “Adjs” “N”.
“N” -> “cat” | “dogs” | “bear” | “girl” | “chocolate” | “rifle”.
“Adjs” -> “Adj” “Adjs” | “young” | “older” | “smart”.
“VP” -> “like” | “likes” | “thinks” | “shot” | “smells” | “VP1”
“PP”.
“VP1” -> “PP” “VP”.
“V” -> “like” | “likes” | “thinks” | “shot” | “smells”.
“PP” -> “Prep” “VP”.
“Prep” -> “with”.

The First and Follow sets are mentioned and parsing table in
appendix I for “CNF Introduced LL(1) English Grammar” for
legibility.

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 36
Parsing table for CNF Introduced LL(1) English Grammar is shown
in appendix II. Parse tree drives the construction of input word from
grammar (G). Let I Є G(Z), where I is the input lexeme, along with
grammar (G), and production rules (Z).

Tree nodes are terminal and non-terminal variables and in figure 3(a)
parse tree of the input string “the dogs shot” for “CNF Introduced
LL(1) English Grammar” is below.

Tree nodes for fig 3(a) are the, dogs, and shot along with the level of
5, depth 4d, leaf nodes (the, dogs, shot), the root node (S).

Fig 3(a) Parse tree of input string “The dogs shot” for “CNF
Introduced LL(1) English Grammar”.

Below fig 3(b) is the derivation of input string “the dogs smells”
for “CNF introduced LL(1) English Grammar

Fig 3(b) Parser tree of input string of “the dogs smells” for “CNF
introduced LL(1) English Grammar”.

Tree nodes for fig 3(b) are the, dogs, and smells along with the
level of 4, depth 3d, leaf nodes (the, dogs, smells), the root node
(S).

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 37

RESULTS & DISCUSSIONS
During the study, 50 English Grammar input stacks () are evaluated
with a traditional LL(1) parser and parsed with CNF introduced
LL(1) parser The steps involved for parsing are given below inline
charts.

Figure 4 Line chart for “LL(1) English Grammar”.

Above “LL(1) English Grammar” line chart displays Total No. of
Steps (8, and 9) for Input Stack (2 and 3). Below is the line chart
for “CNF Introduced LL(1) English Grammar

Figure 5 Line Chart for “CNF Introduced LL(1) English
Grammar”.

The above line chart depicts Input Stack (2, and 3) for CNF
Introduced LL(1) English Grammar with Total No. of Input
symbols (6, and 8) performed. The introduction of CNF into LL(1)
improves the processing but is not significant enough.

The descriptive statistical analysis gives knowledge for the
Mann-Whitney U test. Descriptive statistics compare the (LL(1)
and CNF Introduced LL(1)) parsers. The mean, median, standard
deviation, skewness, and Kurtosis are also mentioned in the table.

Table 1 Normality Tests for “LL(1)” and “CNF Introduced
English Grammar

Normality tests are conducted on each grammars. The normality take
a look at of grammar (CNF) changed into assessed and the Shapiro-
Wilk check indicated that the rating was W (50) =.000. The normality
test of grammar LL(1) became also assessed and the Shapiro-Wilk
test indicated that W (50) =0.000.

For “LL(1) English Grammar” and “CNF brought LL(1) English
Grammar” underneath show the ratings of grammars (LL(1)) Mdn
=57.01 became better than (CNF added LL(1)) Mdn =forty three.99
”
Table 2 Data Analysis for “LL(1) English Grammar” and “CNF
Induced LL(1) English Grammar”.

The facts evaluation for “CNF Introduced LL(1) English Grammar”
data evaluation is proven above. The information evaluation,
normality assessments are conducted to determine the variety of
everyday distribution compiled from random samples to unique
information.

Table under for “LL(1) and CNF Introduced LL(1) English
Grammar” display the scores of grammars (LL(1)) Mdn =57.01
became better than (CNF Introduced LL(1)) Mdn =43.99. Mann-
Whitney take a look at is carried out on the steps concerned
throughout parsing and ranks are shown in table.

Mann-Whitney take a look at is carried out on the steps concerned
throughout parsing and ranks are shown in table

Table 3 “Mann-Whitney Test”, Ranks.

A Mann-Whitney check indicated that this distinction was no
longer statistically enormous. A Mann-Whitney take a look at
indicated that this distinction became now not statistically good
sized, U (NLL (1) =50, NCNF added LL (1) = 50 =924.500, Z
=-2.419, p <.016.

 The projected CNF introduced LL(1) algorithm and conventional
and LL(1) algorithm are comparable, however CNF added LL(1)
parser takes does now not take notifiable distinct steps to technique
input string in comparison to standard LL (1) parser. CNF added
LL(1) parser manner time develops linearly with the quantity of
steps worried in processing lexeme.

enter Stack and outcomes for conventional LL(1) and CNF added
LL(1) English Grammar shown under.

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 38
Table 4 Input Stack for Conventional “LL(1)” and “CNF
Introduced LL(1) English Grammar”.

CONCLUSION
The data analysis shows that the introduction of CNF and
LL(1) parsers give birth to a hybrid CNF introduced LL(1)
algorithm, which on the other hand works similar to the
traditional one. Introducing this study and results provide
some knowledge in the relevant field to achieve parser
efficiency and often have grammatical approval parser effect.

LL(1) algorithm does not perform efficiently with the unit,
useless, and production sets, hence for the grammar to be
in LL(1) it has to be unambiguous. If production appears
then they cancel out the whole production sets and let the
algorithm go in a halt state.

The first part of the limitation comes with LL(1) and the
second with CNF grammar structure. The CNF grammar
structure itself restricts the grammar production from left- the
hand side to only two variables. This CNF grammar structure
sometimes leads the productions rules to divide into more
production rules that cause the algorithm to not parse complete
input lexeme that were parsed before by the conventional
LL(1) algorithm. The increased number of productions of
CNF introduced LL(1) algorithm also adds to overall
processing speed, time, and complexity.

The planned work does not aim to consider the left-recursive
and look-ahead symbols. The planned work is aimed to
improve the prediction performance of LL(1) parsing, but not
to increase the ambiguous grammar acceptance capability of
the parser. Future work can introduce traditional LL(1) parsers
to other forms of algorithms to check their significance and
overall parsing speed.

REFERENCES
[1].	 Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N.,

& Lindblom, B. (1992). Linguistic experience alters
phonetic perception in infants by 6 months of age.
Science, 255(5044), 606-608.

[2].	 Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich,
L. A., Kozhevnikova, E. V., Ryskina, V. L., ... & Lacerda,
F. (1997). Cross-language analysis of phonetic units in
language addressed to infants. Science, 277(5326), 684-
686.

[3].	 Meduna, A. (2014), Formal Languages and Computation:
Models and Their Applications, CRC Press, p. 233.

[4].	 Chomsky, N. (1956). Three Models for the Description
of Language. Vol. 2. Issue. 2. Page. 113-123: IRE
Transactions on Information Theory.

[5].	 Chomsky, N. (1957). Syntactic Structures: The Hague,
Mouton.

[6].	 Jeuring, J. (2006). Applications of Grammars: Citeseer.

[7].	 Ali, H., Naveed, M., Naseem, D., & Shabbir, J. (2020).
LL (1) Parser versus GNF inducted LL (1) Parser on
Arithmetic Expressions Grammar: A Comparative
Study. Quaid-E-Awam University Research Journal of
Engineering, Science & Technology, Nawabshah.,
18(2), 89-101.

[8].	 M. S. Naveed, (2017). “The Impact of Terminal
Prefixing on LL (1) Parsing”, J. Appl. Environ. Biol.
Sci, vol. 7, No. 5, pp. 64-76.	

[9].	 Bernd Kuhl, Axel-Tobias Schreiner. (2000). An Object-

Journal of Information & Communication Technology - JICT Vol. 15 Issue. 1 39
oriented LL(1) parser generator.

[10].	Faraah M. Dabhoiwala.(November 2014). A Review on
LL (1) Parser (Vol. 2, Issue XI). ISSN: 2321-9653

[11].	Lasser, S., Casinghino, C., Fisher, K., & Roux, C.
(2019). A verified LL (1) parser generator. In 10th
International Conference on Interactive Theorem
Proving (ITP 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[12].	Milner, R. (1978). A theory of type polymorphism in
programming. Journal of computer and system sciences,
17(3), 348-375.

[13].	Spenke, M., Muhlenbein, H., Mevenkamp, M., &
Beilken+, C. (1984). A Language Independent Error
Recovery Method for LL (1) Parsers (Vol. 14, Issue I).

[14].	Shilling, J. J. (1993). Incremental LL (1) parsing in
language-based editors. IEEE transactions on software
engineering, 19(9), 935-940.

[15].	James A. Femister. (1986). LPARSER, AN LL (1)
PARSER GENERATOR.

[16].	Parr, T. J., & Quong, R. W. (1995). ANTLR: A
predicated-LL (k) parser generator. Software: Practice
and Experience, 25(7), 789-810.

[17].	Femister, J. A. (1986). LPARSER, an LL (1) parser
generator (Master’s thesis, Lehigh University).

